Advances in Hard-to-Cut Materials


Book Description

The rapid growth of modern industry has resulted in a growing demand for construction materials with excellent operational properties. However, the improved features of these materials can significantly hinder their manufacture and, therefore, they can be defined as hard-to-cut. The main difficulties during the manufacturing/processing of hard-to-cut materials are attributed especially to their high hardness and abrasion resistance, high strength at room or elevated temperatures, increased thermal conductivity, as well as resistance to oxidation and corrosion. Nowadays, the group of hard-to-cut materials is extensive and still expanding, which is attributed to the development of a novel manufacturing techniques (e.g., additive technologies). Currently, the group of hard-to-cut materials mainly includes hardened and stainless steels, titanium, cobalt and nickel alloys, composites, ceramics, as well as the hard clads fabricated by additive techniques. This Special Issue, “Advances in Hard-to-Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity”, provides the collection of research papers regarding the various problems correlated with hard-to-cut materials. The analysis of these studies reveals the primary directions regarding the developments in manufacturing methods, characterization, and optimization of hard-to-cut materials.




Advanced Machining Processes of Metallic Materials


Book Description

Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications, Second Edition, explores the metal cutting processes with regard to theory and industrial practice. Structured into three parts, the first section provides information on the fundamentals of machining, while the second and third parts include an overview of the effects of the theoretical and experimental considerations in high-level machining technology and a summary of production outputs related to part quality. In particular, topics discussed include: modern tool materials, mechanical, thermal and tribological aspects of machining, computer simulation of various process phenomena, chip control, monitoring of the cutting state, progressive and hybrid machining operations, as well as practical ways for improving machinability and generation and modeling of surface integrity. This new edition addresses the present state and future development of machining technologies, and includes expanded coverage on machining operations, such as turning, milling, drilling, and broaching, as well as a new chapter on sustainable machining processes. In addition, the book provides a comprehensive description of metal cutting theory and experimental and modeling techniques, along with basic machining processes and their effective use in a wide range of manufacturing applications. The research covered here has contributed to a more generalized vision of machining technology, including not only traditional manufacturing tasks, but also potential (emerging) new applications, such as micro and nanotechnology. - Includes new case studies illuminate experimental methods and outputs from different sectors of the manufacturing industry - Presents metal cutting processes that would be applicable for various technical, engineering, and scientific levels - Includes an updated knowledge of standards, cutting tool materials and tools, new machining technologies, relevant machinability records, optimization techniques, and surface integrity




Micro-Cutting


Book Description

Micro-Cutting: Fundamentals and Applications comprehensively covers the state of the art research and engineering practice in micro/nano cutting: an area which is becoming increasingly important, especially in modern micro-manufacturing, ultraprecision manufacturing and high value manufacturing. This book provides basic theory, design and analysis of micro-toolings and machines, modelling methods and techniques, and integrated approaches for micro-cutting. The fundamental characteristics, modelling, simulation and optimization of micro/nano cutting processes are emphasized with particular reference to the predictabilty, producibility, repeatability and productivity of manufacturing at micro and nano scales. The fundamentals of micro/nano cutting are applied to a variety of machining processes including diamond turning, micromilling, micro/nano grinding/polishing, ultraprecision machining, and the design and implementation of micro/nano cutting process chains and micromachining systems. Key features • Contains contributions from leading global experts • Covers the fundamental theory of micro-cutting • Presents applications in a variety of machining processes • Includes examples of how to implement and apply micro-cutting for precision and micro-manufacturing Micro-Cutting: Fundamentals and Applications is an ideal reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, as well as machine tool designers. It is also a suitable textbook for postgraduate students in the areas of micro-manufacturing, micro-engineering and advanced manufacturing methods.




Advances in Manufacturing Technology XXXV


Book Description

Within the context of Industrial 4.0 and beyond, developing and managing the technologies and operations key to sustaining the success of manufacturing businesses is crucial, and the promotion of manufacturing-engineering education, training, and research is of vital importance. This book presents the proceedings of ICMR 2022, the 19th International Conference in Manufacturing Research, Incorporating the 36th National Conference in Manufacturing Research, held in Derby, UK, from 6 - 8 September 2022. For over two decades, ICMR has been the main manufacturing research conference held in the UK. Bringing together researchers, academics, and industrialists to share their knowledge and experience, the conference provides a friendly and inclusive platform for a broad community of researchers who share the common goal of making digital and advanced manufacturing as efficient and effective as possible. The theme of ICMR2022 is smart manufacturing. Of the 78 papers submitted, 58 were accepted for presentation after review and are included here. This represents an acceptance rate of 72%. The book is divided into 8 sections: smart manufacturing; digital manufacturing; additive manufacturing; robotics and industrial automation; composite manufacturing and machining processes; product design, development and quality management; information and knowledge management; and decision support and production optimization. Exploring all core areas of digital and advanced manufacturing engineering, the book will be of interest to all those working in the field.




Non-Traditional and Advanced Machining Technologies


Book Description

Non-Traditional and Advanced Machining Technologies covers the technologies, machine tools, and operations of non-traditional machining processes and assisted machining technologies. Two separate chapters deal with the machining techniques of difficult-to-cut materials, such as stainless, super alloys, ceramics, and composites. Design for machining, accuracy and surface integrity of machined parts, environment-friendly machine tools and operations, and hexapods are also presented. The topics covered throughout reflect the rapid and significant advances that have occurred in various areas in machining technologies and are organized and described in such a manner to draw the interest of the reader. The treatments are aimed at motiving and challenging the reader to explore viable solutions to a variety of questions regarding product design and optimum selection of machining operations for a given task. The book will be useful to professionals, students, and companies in the areas of industrial, manufacturing, mechanical, materials, and production engineering fields.




Advances in Ceramic Matrix Composites


Book Description

Advances in Ceramic Matrix Composites, Second Edition, delivers an innovative approach to ceramic matrix composites, focusing on the latest advances and materials developments. As advanced ceramics and composite materials are increasingly utilized as components in batteries, fuel cells, sensors, high-temperature electronics, membranes and high-end biomedical devices, and in seals, valves, implants, and high-temperature and wear components, this book explores the substantial progress in new applications. Users will gain knowledge of the latest advances in CMCs, with an update on the role of ceramics in the fabrication of Solid Oxide Fuel Cells for energy generation, and on natural fiber-reinforced eco-friendly geopolymer and cement composites. The specialized information contained in this book will be highly valuable to researchers and graduate students in ceramic science, engineering and ceramic composites technology, and engineers and scientists in the aerospace, energy, building and construction, biomedical and automotive industries. - Provides detailed coverage of parts and processing, properties and applications - Includes new developments in the field, such as natural fiber-reinforced composites and the use of CMCs in Solid Oxide Fuel Cells (SOFCs) - Presents state-of-the-art research, enabling the reader to understand the latest applications for CMCs







Advanced Materials and Engineering Materials V


Book Description

Selected, peer reviewed papers from the International Conference on Advanced Materials and Engineering Materials (ICAMEM), April 15-16, 2016, Hong Kong, China




Recent Advancement in Manufacturing Processes


Book Description

Special topic volume with invited peer reviewed papers only