Chemical Ecology of Insects


Book Description

Our objective in compiling a series of chapters on the chemical ecology of insects has been to delineate the major concepts of this discipline. The fine line between presenting a few topics in great detail or many topics in veneer has been carefully drawn, such that the book contains sufficient diversity to cover the field and a few topics in some depth. After the reader has penetrated the crust of what has been learned about chemical ecology of insects, the deficiencies in our understanding of this field should become evident. These deficiencies, to which no chapter topic is immune, indicate the youthful state of chemical ecology and the need for further investigations, especially those with potential for integrating elements that are presently isolated from each other. At the outset of this volume it becomes evident that, although we are beginning to decipher how receptor cells work, virtually nothing is known of how sensory information is coded to become relevant to the insect and to control the behavior of the insect. This problem is exacerbated by the state of our knowledge of how chemicals are distributed in nature, especially in complex habitats. And finally, we have been unable to understand the significance of orientation pathways of insects, in part because of the two previous problems: orientation seems to depend on patterns of distri bution of chemicals, the coding of these patterns by the central nervous system, and the generation of motor output based on the resulting motor commands.




Chemical Ecology of Insects


Book Description

Insects have evolved very unique and interesting tactics using chemical signals to survive. Chemical ecology illustrates the working of the biological network by means of chemical analyses. Recent advances in analytical technology have opened the way to a better understanding of the more complicated and abyssal interactions of insects with other organisms including plants and microbes. This book covers recent research on insects and chemical communications and presents the current status about challenges faced by chemical ecologists for the management of pests in agriculture and human health.




Advances in Insect Chemical Ecology


Book Description

Eight 2004 reviews of how insects use chemical signals to communicate and interact ecologically.




Insect Hydrocarbons


Book Description

A unique and critical analysis of the wealth of research conducted on the biology, biochemistry and chemical ecology of the rapidly growing field of insect cuticular hydrocarbons. Authored by leading experts in their respective fields, the twenty chapters show the complexity that has been discovered in the nature and role of hydrocarbons in entomology. Covers, in great depth, aspects of chemistry (structures, qualitative and quantitative analysis), biochemistry (biosynthesis, molecular biology, genetics, evolution), physiology, taxonomy, and ecology. Clearly presents to the reader the array of data, ideas, insights and historical disagreements that have been accumulated during the past half century. An emphasis is placed on the role of insect hydrocarbons in chemical communication, especially among the social insects. Includes the first review on the chemical synthesis of insect hydrocarbons. The material presented is a major resource for current researchers and a source of ideas for new researchers.




Advances in Insect Chemical Ecology


Book Description

Chemical signals mediate all aspects of insects' lives and their ecological interactions. The discipline of chemical ecology seeks to unravel these interactions by identifying and defining the chemicals involved, and documenting how perception of these chemical mediators modifies behaviour and ultimately reproductive success. Chapters in this 2004 volume consider how plants use chemicals to defend themselves from insect herbivores; the complexity of floral odors that mediate insect pollination; tritrophic interactions of plants, herbivores, and parasitoids and the chemical cues that parasitoids use to find their herbivore hosts; the semiochemically mediated behaviours of mites; pheromone communication in spiders and cockroaches; the ecological dependency of tiger moths on the chemistry of their host-plants; and the selective forces that shape the pheromone communication channel of moths. The volume presents descriptions of the chemicals involved, the effects of semiochemically mediated interactions on reproductive success, and the evolutionary pathways that have shaped the chemical ecology of arthropods.




Insect Pheromone Biochemistry and Molecular Biology


Book Description

Insect Pheromone Biochemistry and Molecular Biology, Second Edition, provides an updated and comprehensive review of the biochemistry and molecular biology of insect pheromone biosynthesis and reception. The book ties together historical information with recent discoveries, provides the reader with the current state of the field, and suggests where future research is headed. Written by international experts, many of whom pioneered studies on insect pheromone production and reception, this release updates the 2003 first edition with an emphasis on recent advances in the field. This book will be an important resource for entomologists and molecular biologists studying all areas of insect communication. - Offers a historical and contemporary perspective, with a focus on advances over the last 15 years - Discusses the molecular and regulatory mechanisms underlying pheromone production/detection, as well as the evolution of these processes across the insects - Led by editors with broad expertise in the metabolic pathways of pheromone production and the biochemical and genetic processes of pheromone detection




Ecological Engineering for Pest Management


Book Description

Ecological engineering is about manipulating farm habitats, making them less favourable for pests and more attractive to beneficial insects. Though they have received far less research attention and funding, ecological approaches may be safer and more sustainable than their controversial cousin, genetic engineering. This book brings together contributions from international workers leading the fast moving field of habitat manipulation, reviewing the field and paving the way towards the development and application of new pest management approaches. Chapters explore the frontiers of ecological engineering methods including molecular approaches, high tech marking and remote sensing. They also review the theoretical aspects of this field and how ecological engineering may interact with genetic engineering. The technologies presented offer opportunities to reduce crop losses to insects while reducing the use of pesticides and providing potentially valuable habitat for wildlife conservation. With contributions from the USA, UK, Germany, Switzerland, Australia, New Zealand, Kenya and Israel, this book provides comprehensive coverage of international progress towards sustainable pest management.




Chemical Ecology of Insect Parasitoids


Book Description

Insect parasitoids are a fascinating group of animals in many respects. Perhaps the most fascinating point is that these insects, in the course of the evolutionary time, have developed an impressive way to use chemical compounds to dialogue with the different protagonists of their environment (i.e., conspecifics, their hosts and the plants on which their hosts are living). Unravelling the evolutionary meaning of such chemical communication networks can give new insights into the ecology of these insects and especially on how to improve their use for the control of noxious pests in biological control programmes. Chemical Ecology of Insect Parasitoids is a timely publication, with organised chapters to present the most important knowledge and discoveries that have taken place over the last decade, and their potential use in pest control strategy. Specific relevant case studies are presented to enhance the reader's experience. Suited to graduate students and professional researchers and practitioners in pest management, entomology, evolutionary biology, behavioural ecology, and chemical ecology, this book is essential for anyone needing information on this important group of insects.




Insect Molecular Biology and Ecology


Book Description

Insects represent the most abundant and diverse animal group on Earth. The number of described species is more than one million and up to ten million are estimated. Insects have one of the widest distributions in the world because they have adapted to extreme ranges of environments.Molecular ecology studies ecological processes based on the analysi




Pheromones and Animal Behavior


Book Description

This book explains how animals use chemical communication, emphasising the evolutionary context and covering fields from ecology to neuroscience and chemistry.