Advances in Linear Logic


Book Description

This volume gives an overview of linear logic that will be useful to mathematicians and computer scientists working in this area.




Linear Logic in Computer Science


Book Description

This book illustrates linear logic in the application of proof theory to computer science.





Book Description




Advances in Proof-Theoretic Semantics


Book Description

This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.




Justification Logic


Book Description

Develops a new logic paradigm which emphasizes evidence tracking, including theory, connections to other fields, and sample applications.




Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics


Book Description

This book provides an overview of the state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. Covering topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations, it discusses applications such as fuzzy real-time scheduling, intelligent control, diagnostics and time series prediction. The book features selected contributions presented at the 6th international congress of the Moroccan Applied Mathematics Society, which took place at Sultan Moulay Slimane University Beni Mellal, Morocco, from 7 to 9 November 2019.




Temporal Logic and State Systems


Book Description

Temporal logic has developed over the last 30 years into a powerful formal setting for the specification and verification of state-based systems. Based on university lectures given by the authors, this book is a comprehensive, concise, uniform, up-to-date presentation of the theory and applications of linear and branching time temporal logic; TLA (Temporal Logic of Actions); automata theoretical connections; model checking; and related theories. All theoretical details and numerous application examples are elaborated carefully and with full formal rigor, and the book will serve as a basic source and reference for lecturers, graduate students and researchers.




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




Proof Theory


Book Description

Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics. The book is suitable for a wide audience and can be used in advanced undergraduate or graduate courses. Computer scientists will discover intriguing connections between sequent calculi and resolution as well as between sequent calculi and typed systems. Those interested in the constructive approach will find formalizations of intuitionistic logic and two calculi for linear logic. Mathematicians and philosophers will welcome the treatment of a range of variations on calculi for classical logic. Philosophical logicians will be interested in the calculi for relevance logics while linguists will appreciate the detailed presentation of Lambek calculi and their extensions.




Computer Science Logic


Book Description

The Annual Conference of the European Association for Computer Science Logic, CSL 2002, was held in the Old College of the University of Edinburgh on 22–25 September 2002. The conference series started as a programme of Int- national Workshops on Computer Science Logic, and then in its sixth meeting became the Annual Conference of the EACSL. This conference was the sixteenth meeting and eleventh EACSL conference; it was organized by the Laboratory for Foundations of Computer Science at the University of Edinburgh. The CSL 2002 Programme Committee considered 111 submissions from 28 countries during a two week electronic discussion; each paper was refereed by at least three reviewers. The Committee selected 37 papers for presentation at the conference and publication in these proceedings. The Programme Committee invited lectures from Susumu Hayashi, Frank Neven, and Damian Niwinski; ́ the papers provided by the invited speakers appear at the front of this volume. In addition to the main conference, two tutorials – ‘Introduction to Mu- Calculi’ (Julian Brad?eld) and ‘Parametrized Complexity’ (Martin Grohe) – were given on the previous day.