Advances in Lorentzian Geometry


Book Description

Offers insight into the methods and concepts of a very active field of mathematics that has many connections with physics. It includes contributions from specialists in differential geometry and mathematical physics, collectively demonstrating the wide range of applications of Lorentzian geometry, and ranging in character from research papers to surveys to the development of new ideas.




Developments in Lorentzian Geometry


Book Description

This proceedings volume gathers selected, revised papers presented at the X International Meeting on Lorentzian Geometry (GeLoCor 2021), virtually held at the University of Córdoba, Spain, on February 1-5, 2021. It includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference. Taken together, the papers offer an invaluable introduction to key topics discussed at the conference and an overview of the main techniques in use today. This volume also gathers extended revisions of key studies in this field. Bringing new results and examples, these unique contributions offer new perspectives to the original problems and, in most cases, extend and reinforce the robustness of previous findings. Hosted every two years since 2001, the International Meeting on Lorentzian Geometry has become one of the main events bringing together the leading experts on Lorentzian geometry. In this volume, the reader will find studies on spatial and null hypersurfaces, low regularity in general relativity, conformal structures, Lorentz-Finsler spacetimes, and more. Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry.




Global Lorentzian Geometry


Book Description

Bridging the gap between modern differential geometry and the mathematical physics of general relativity, this text, in its second edition, includes new and expanded material on topics such as the instability of both geodesic completeness and geodesic incompleteness for general space-times, geodesic connectibility, the generic condition, the sectional curvature function in a neighbourhood of degenerate two-plane, and proof of the Lorentzian Splitting Theorem.;Five or more copies may be ordered by college or university stores at a special student price, available on request.




Differential Geometry of Lightlike Submanifolds


Book Description

This book presents research on the latest developments in differential geometry of lightlike (degenerate) subspaces. The main focus is on hypersurfaces and a variety of submanifolds of indefinite Kählerian, Sasakian and quaternion Kähler manifolds.




Advances in Lorentzian Geometry


Book Description

This volume offers deep insight into the methods and concepts of a very active field of mathematics that has many connections with physics. Researchers and students will find it to be a useful source for their own investigations, as well as a general report on the latest topics of interest. Presented are contributions from several specialists in differential geometry and mathematical physics, collectively demonstrating the wide range of applications of Lorentzian geometry, and ranging in character from research papers to surveys to the development of new ideas. This volume consists mainly of p.




Recent Developments in Pseudo-Riemannian Geometry


Book Description

This book provides an introduction to and survey of recent developments in pseudo-Riemannian geometry, including applications in mathematical physics, by leading experts in the field. Topics covered are: Classification of pseudo-Riemannian symmetric spaces Holonomy groups of Lorentzian and pseudo-Riemannian manifolds Hypersymplectic manifolds Anti-self-dual conformal structures in neutral signature and integrable systems Neutral Kahler surfaces and geometric optics Geometry and dynamics of the Einstein universe Essential conformal structures and conformal transformations in pseudo-Riemannian geometry The causal hierarchy of spacetimes Geodesics in pseudo-Riemannian manifolds Lorentzian symmetric spaces in supergravity Generalized geometries in supergravity Einstein metrics with Killing leaves The book is addressed to advanced students as well as to researchers in differential geometry, global analysis, general relativity and string theory. It shows essential differences between the geometry on manifolds with positive definite metrics and on those with indefinite metrics, and highlights the interesting new geometric phenomena, which naturally arise in the indefinite metric case. The reader finds a description of the present state of the art in the field as well as open problems, which can stimulate further research.




Introduction to Lorentz Geometry


Book Description

Lorentz Geometry is a very important intersection between Mathematics and Physics, being the mathematical language of General Relativity. Learning this type of geometry is the first step in properly understanding questions regarding the structure of the universe, such as: What is the shape of the universe? What is a spacetime? What is the relation between gravity and curvature? Why exactly is time treated in a different manner than other spatial dimensions? Introduction to Lorentz Geometry: Curves and Surfaces intends to provide the reader with the minimum mathematical background needed to pursue these very interesting questions, by presenting the classical theory of curves and surfaces in both Euclidean and Lorentzian ambient spaces simultaneously. Features: Over 300 exercises Suitable for senior undergraduates and graduates studying Mathematics and Physics Written in an accessible style without loss of precision or mathematical rigor Solution manual available on www.routledge.com/9780367468644




The Routledge Companion to Philosophy of Physics


Book Description

The Routledge Companion to Philosophy of Physics is a comprehensive and authoritative guide to the state of the art in the philosophy of physics. It comprisess 54 self-contained chapters written by leading philosophers of physics at both senior and junior levels, making it the most thorough and detailed volume of its type on the market – nearly every major perspective in the field is represented. The Companion’s 54 chapters are organized into 12 parts. The first seven parts cover all of the major physical theories investigated by philosophers of physics today, and the last five explore key themes that unite the study of these theories. I. Newtonian Mechanics II. Special Relativity III. General Relativity IV. Non-Relativistic Quantum Theory V. Quantum Field Theory VI. Quantum Gravity VII. Statistical Mechanics and Thermodynamics VIII. Explanation IX. Intertheoretic Relations X. Symmetries XI. Metaphysics XII. Cosmology The difficulty level of the chapters has been carefully pitched so as to offer both accessible summaries for those new to philosophy of physics and standard reference points for active researchers on the front lines. An introductory chapter by the editors maps out the field, and each part also begins with a short summary that places the individual chapters in context. The volume will be indispensable to any serious student or scholar of philosophy of physics.




What Makes Time Special?


Book Description

As we navigate through life we instinctively model time as having a flowing present that divides a fixed past from open future. This model develops in childhood and is deeply saturated within our language, thought and behavior, affecting our conceptions of the universe, freedom and the self. Yet as central as it is to our lives, physics seems to have no room for this flowing present. What Makes Time Special? demonstrates this claim in detail and then turns to two novel positive tasks. First, by looking at the world "sideways" - in the spatial directions -- it shows that physics is not "spatializing time" as is commonly alleged. Even relativity theory makes significant distinctions between the spacelike and timelike directions, often with surprising consequences. Second, if the flowing present is an illusion, it is a deep one worthy of explanation. The author develops a picture whereby the temporal flow arises as an interaction effect between an observer and the physics of the world. Using insights from philosophy, cognitive science, biology, psychology and physics, the theory claims that the flowing present model of time is the natural reaction to the perceptual and evolutionary challenges thrown at us. Modeling time as flowing makes sense even if it misrepresents it.




New Developments in Differential Geometry


Book Description

Proceedings of the Colloquium on Differential Geometry, Debrecen, Hungary, July 26-30, 1994