Advances in Shape Memory Materials


Book Description

This book is devoted to the development of the shape memory materials and their applications. It covers many aspects of smart materials. It also describes the method on how we can obtain not only large recovery strains but also high recovery stress, energy storage and energy dissipation in applications. This volume treats the mechanical properties of shape memory alloys, shape memory polymers and the constitutive equations of the materials which are necessary to design the shape memory elements in applications. It also deals with the fatigue properties of materials, the method to design the shape memory elements, and the shape memory composites. The authors are international experts on shape memory alloys and shape memory polymers in the metallurgical, chemical, mechanical and engineering fields. The book will be of interest to graduate students, engineers, scientists and designers who are working in the field of electric and mechanical engineering, industries, medical engineering, aerospace engineering, robots, automatic machines, clothes and recycling for research, design and manufacturing.




Advances in Magnetic Shape Memory Materials


Book Description

Special topic volume with invited peer reviewed papers only.







Shape Memory Polymers


Book Description

Shape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing. This book provides the latest advanced information of on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP. The basic fundamentals of SMP, including shape-memory mechanisms and mechanics are described. This will aid reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field. The book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well. This book should prove to be extremely useful for academics, R&D managers, researcher scientists, engineers, and all others related to the SMP research.




Advances in Shape Memory Materials


Book Description

Ferromagnetic Shape Memory Alloys Special topic volume with invited papers only




Novel Functional Magnetic Materials


Book Description

This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect. Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdisciplinary and forward-looking approach will benefit the scientific community, particularly researchers and advanced graduate students working in the field of advanced magnetic materials, composites, and high-performance sensor and microwave devices.




Shape Memory Microactuators


Book Description

Overview of recent achievements, describing the microactuator development of microvalves and liner actuators comprehensively from concept through prototype. Further key aspects included are three-dimensional models for handling complex SMA actuator geometries and coupled simulation routines that take multifunctional properties into account. Mechanical and thermal optimization criteria are introduced for actuator design, allowing an optimum use of the shape memory effect. It is shown that some of the prototypes presented, e.g. SMA microgrippers, already outperform conventional components.




Shape-Memory Alloys Handbook


Book Description

The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.




Shape Memory Alloys


Book Description

This book is a result of contributions of experts from international scientific community working in different aspects of shape memory alloys (SMAs) and reports on the state-of-the-art research and development findings on this topic through original and innovative research studies. Through its five chapters, the reader will have access to works related to ferromagnetic SMAs, while it introduces some specific applications like development of faster SMA actuators and application of nanostructural SMAs in medical devices. The book contains up-to-date publications of leading experts, and the edition is intended to furnish valuable recent information to the professionals involved in shape memory alloys analysis and applications. The text is addressed not only to researchers but also to professional engineers, students, and other experts in a variety of disciplines, both academic and industrial, seeking to gain a better understanding of what has been done in the field recently and what kind of open problems are in this area.




Progress in Advanced Structural and Functional Materials Design


Book Description

This book describes clearly various research topics investigated for these 10 years in the Research Center of Advanced Structural and Functional Materials Design in Osaka University, Japan. Every chapter is aimed at understanding most advanced researches in materials science by describing its fundamentals and details as much as possible. Since both general explanations and cutting-edge commentaries are given for each topic in this book, it provides a lot of useful information for ordinary readers as well as materials scientists & engineers who wish to understand the future development in materials science fields of metals, alloys, ceramics, semiconductors etc. In particular, this book deals with special fusion area of structural and functional materials such as medical bone materials, of which contents are very unique features as materials science textbook.