Advanced Techniques for Materials Characterization


Book Description

Volume is indexed by Thomson Reuters BCI (WoS). Nowadays, an impressively large number of powerful characterization techniques is being used by physicists, chemists, biologists and engineers in order to solve analytical research problems; especially those related to the investigation of the properties of new materials for advanced applications. Although there are a few available books which deal with such experimental techniques, they are either too exhaustive and cover very few techniques or are too elementary to provide a solid basis for learning to use the characterization technique. Moreover, such books usually over-emphasize the textbook approach: being full of theoretical concepts and mathematical derivations, and omitting the practical instruction required in order to permit newcomers to use the techniques.




Materials Characterization


Book Description

This book covers state-of-the-art techniques commonly used in modern materials characterization. Two important aspects of characterization, materials structures and chemical analysis, are included. Widely used techniques, such as metallography (light microscopy), X-ray diffraction, transmission and scanning electron microscopy, are described. In addition, the book introduces advanced techniques, including scanning probe microscopy. The second half of the book accordingly presents techniques such as X-ray energy dispersive spectroscopy (commonly equipped in the scanning electron microscope), fluorescence X-ray spectroscopy, and popular surface analysis techniques (XPS and SIMS). Finally, vibrational spectroscopy (FTIR and Raman) and thermal analysis are also covered.




Handbook of Materials Characterization


Book Description

This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.




Advances in Materials Characterization


Book Description

The characterization of materials and phenomena has historically been the principal limitation to the development in each area of science. Once what we are observing is well defined, a theoretical analysis rapidly follows. Modern theories of chemical bonding did not evolve until the methods of analytical chemistry had progressed to a point where the bulk stoichiometry of chemical compounds was firmly established. The great progress made during this century in understanding chemistry has followed directly from the development of an analytical chemistry based on the Dalton assumption of multiple proportions. It has only become apparent in recent years that the extension of our understanding of materials hinges on their non-stoichiometric nature. The world of non-Daltonian chemistry is very poorly understood at present because of our lack of ability to precisely characterize it. The emergence of materials science has only just occurred with our recognition of effects, which have been thought previously to be minor variations from ideality, as the principal phenomena controlling properties. The next step in the historical evolution of materials science must be the development of tools to characterize the often subtle phenomena which determine properties of materials. The various discussions of instrumental techniques presented in this book are excellent summaries for the state-of-the-art of materials characterization at this rather critical stage of materials science. The application of the tools described here, and those yet to be developed, holds the key to the development of this infant into a mature science.




Characterization of Materials


Book Description

"A thoroughly updated and expanded new edition, this work features a logical, detailed, and self-contained coverage of the latest materials characterization techniques. Reflecting the enormous progress in the field since the last edition, this book details a variety of new powerful and accessible tools, improvements in methods arising from new instrumentation and approaches to sample preparation, and characterization techniques for new types of materials, such as nanomaterials. Researchers in materials science and related fields will be able to identify and apply the most appropriate method in their work"--




Experimental Characterization of Advanced Composite Materials


Book Description

Over much of the last three decades, the evolution of techniques for characterizing composite materials has struggled to keep up with the advances of composite materials themselves and their broadening areas of application. In recent years, however, much work has been done to consolidate test methods and better understand those being used. Finally,




Materials Characterization Using Nondestructive Evaluation (NDE) Methods


Book Description

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials




Advanced Green Materials


Book Description

Advanced Green Materials: Fabrication, Characterization and Applications of Biopolymers and Biocomposites looks at their extraction, purification, modification, and processing for various industrial, biomedical, pharmaceutical, and construction applications. The book comprehensively summarizes recent technical research accomplishments in natural materials and discusses various aspects of natural materials from a chemistry/engineering point of view. The book is unique with contributions from experts working on hybrid biopolymers and bio- composites, bioactive and biodegradable materials, bio-inert polymers and composites, natural polymer and composites, and metallic natural materials. The book will be a useful reference for scientists, academicians, research scholars, and biotechnologists. Advanced biocomposite materials continue to become increasingly popular and important for a broad range of different science and engineering applications. In the race to exploit the unique mechanical, thermal, and electrical properties of these materials, researchers must also address new challenges to predict, understand, and manage the potentially adverse effects they could have on the environment and human lives. The book describes recent developments and applications of biopolymers and biocomposites for applications in various industrial fields. Chapters include original research and the latest reviews in similar fields. Biopolymers and biocomposites occupy an exceptional position in the exciting new world of novel biomaterials. Considering their sustainability, non-toxic properties, and their ability to have tailored properties and functions, they should be considered as a smart candidate in the advancement of biomaterials technology. Covers all types of biopolymers and advanced industrial applications, from packaging to biomedical therapeutics Discusses the shift from research to industrial large-scale application of biopolymers and biocomposites Emphasizes new strategic trends, such as bio-based and biodegradable additives for bioplastics, PHAs, new lignin-based biopolymers, and new polymers based on terpenes and biosensor applications




Materials Characterization Techniques


Book Description

Experts must be able to analyze and distinguish all materials, or combinations of materials, in use today-whether they be metals, ceramics, polymers, semiconductors, or composites. To understand a material's structure, how that structure determines its properties, and how that material will subsequently work in technological applications, researche




Advances in Materials Characterization II


Book Description

This book represents the proceedings of the second inter disciplinary conference on materials characterization held from July 30 through August 3, 1984 at the New York State College of Ceramics at Alfred University. The conference was the 20th in the University Series on Ceramic Science, instituted in 1964 by Alfred University, the University of California at Berkeley, North Carolina State University and Notre Dame University. Volume I of the proceedings of the first conference using this interdisciplinary approach to materials characterization was published as "Advances in Materials Characterization", edited by D. R. Rossington, R. A. Condrate and R. L. Snyder, and was listed as volume 15 of the Materials Science Research series of Plenum Press (New York, 1983). The purpose of bringing together scientists from a wide range of disciplines to present and discuss the latest developments in their fields is to promote cross fertilization. The first conference of this type and its resulting volume of proceedings stimulated a significant dialogue between disciplines concerning the characterization of materials, therefore indicating a need for a continuing series of such conferences. Characterization lies at the core of materials science.