Advances in Materials Science for Environmental and Energy Technologies VI


Book Description

An excellent one-volume resource for understanding the most important current issues in the research and advances in materials science for environmental and energy technologies This proceedings volume contains a collection of 20 papers from the 2016 Materials Science and Technology (MS&T'16) meeting held in Salt Lake City, UT, from October 24-27 of that year. These conference symposia provided a forum for scientists, engineers, and technologists to discuss and exchange state-of-the-art ideas, information, and technology on advanced methods and approaches for processing, synthesis, characterization, and applications of ceramics, glasses, and composites. Topics covered include: the 8th International Symposium on Green and Sustainable Technologies for Materials Manufacturing Processing; Materials Issues in Nuclear Waste Management in the 21st Century; Construction and Building Materials for a Better Environment; Materials for Nuclear Applications and Extreme Environments; Nanotechnology for Energy, Healthcare, and Industry; and Materials for Processes for CO2 Capture, Conversion and Sequestration. Logically organized and carefully selected articles give insight into advances in materials science for environmental and energy technologies. Incorporates the latest developments related to advances in materials science for environmental and energy technologies Advances in Materials Science for Environmental and Energy Technologies VI: Ceramic Transactions Volume 262 is ideal for academics in mechanical and chemical engineering, materials and or ceramics, chemistry departments and for those working in government laboratories.







Sustainable Material Solutions for Solar Energy Technologies


Book Description

Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. - Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage - Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy - Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis







ERDA Research Abstracts


Book Description




Manufacturing Science and Technology VI


Book Description

Selected, peer reviewed papers from the 2015 6th International Conference on Manufacturing Science and Technology (ICMST 2015), June 1-2, 2015, Bandar Seri Begawan, Brunei




Nanocomposites-Advanced Materials for Energy and Environmental Aspects


Book Description

Nanocomposites-Advanced Materials for Energy and Environmental Aspects provides a brief introduction to metal oxides. The book then discusses novel fabrication methodologies and eco-friendly methods for using a broad range of metal oxide-based nanocomposites in innovative ways. Key aspects include fundamental characteristics of environmentally sustainable fabrication of materials for solar power, power generation and the textiles industries. Commercialization and economic aspects that are currently of major significance are also discussed in detail. The book represents an important information resource for material scientists and engineers to create the next generation of products and devices for energy and environmental applications. Metal and metal oxide-based nanocomposites are at the heart of some of the most exciting developments in the field of energy and environmental research. They have exceptional properties and are utilized in electronic and environmental sensing devices, for energy storage, electrode materials, fuel cells, membranes, and more. - Covers fabrication, standard characterization and photocatalytic mechanism for a wide range of applications - Includes broad ranging metal and metal oxide-based applications covering environmental, energy, electronics, oil, gas, water treatment and sensing - Evaluates dye consumption in the textiles industries and the energy related research that will determine options for sustainable and transformational opportunities




Advances in Energy, Environment and Materials Science


Book Description

The 2016 International Conference on Energy, Environment and Materials Science (EEMS 2016) took place on July 29-31, 2016 in Singapore. EEMS 2016 has been a meeting place for innovative academics and industrial experts in the field of energy and environment research. The primary goal of the conference is to promote research and developmental activities in energy and environment research and further to promote scientific information exchange between researchers, developers, engineers, students, and practitioners working all around the world. The conference will be organized every year making it an ideal platform for people to share views and experiences in energy, environment and materials science and related areas.




Energy


Book Description




Smart and Flexible Energy Devices


Book Description

The scientific community and industry have seen tremendous progress in efficient energy production and storage in the last few years. With the advancement in technology, new devices require high-performance, stretchable, bendable, and twistable energy sources, which can be integrated into next-generation wearable, compact, and portable electronics for medical, military, and civilian applications. Smart and Flexible Energy Devices examines the materials, basic working principles, and state-of-the-art progress of flexible devices like fuel cells, solar cells, batteries, and supercapacitors. Covering the synthesis approaches for advanced energy materials in flexible devices and fabrications and fundamental design concepts of flexible energy devices, such as fuel cells, solar cells, batteries, and supercapacitors, top author teams explore how newer materials with advanced properties are used to fabricate the energy devices to meet the future demand for flexible electronics. Additional features include: • Addressing the materials, technologies, and challenges of various flexible energy devices under one cover • Emphasizing the future demand and challenges of the field • Considering all flexible energy types, such as fuel cells, solar cells, batteries, and supercapacitors • Suitability for undergraduate and postgraduate students of material science and energy programs This is a valuable resource for academics and industry professionals working in the field of energy materials, nanotechnology, and energy devices.