Advances in Microfluidic Technologies for Energy and Environmental Applications


Book Description

Microfluidics have aroused a new surge of interest in recent years in environmental and energy areas, and inspired novel applications to tackle the worldwide challenges for sustainable development. This book aims to present readers with a valuable compendium of significant advances in applying the multidisciplinary microfluidic technologies to address energy and environmental problems in a plethora of areas such as environmental monitoring and detection, new nanofluid application in traditional mechanical manufacturing processes, development of novel biosensors, and thermal management. This book will provide a new perspective to the understanding of the ever-growing importance of microfluidics.




Recent Advances in Material, Manufacturing, and Machine Learning


Book Description

The main aim of the 2nd international conference on recent advances in materials manufacturing and machine learning processes-2023 (RAMMML-23) is to bring together all interested academic researchers, scientists, engineers, and technocrats and provide a platform for continuous improvement of manufactur□ing, machine learning, design and materials engineering research. RAMMML 2023 received an overwhelm□ing response with more than 530 full paper submissions. After due and careful scrutiny, about 120 of them have been selected for presentation. The papers submitted have been reviewed by experts from renowned institutions, and subsequently, the authors have revised the papers, duly incorporating the suggestions of the reviewers. This has led to significant improvement in the quality of the contributions, Taylor & Francis publications, CRC Press have agreed to publish the selected proceedings of the conference in their book series of Advances in Mechanical Engineering and Interdisciplinary Sciences. This enables fast dissemina□tion of the papers worldwide and increases the scope of visibility for the research contributions of the authors.




Biosensors


Book Description

Biosensors: Fundamentals, Emerging Technologies, and Applications provides insight into the sensing applications of different types of biosensors relating to environmental pollutants, microbiological analysis, and healthcare. It describes state-of-the-art research in biosensors, point of care testing, potential applications, as well as future prospects for biosensors. This book: Presents the essentials that readers need to know to make full use of biosensor technology Discusses recent perspectives on optical and electrochemical biosensors Details biosensor types for medical applications Teaches how to use enzymes for biological recognition in biomarker assays Proposes innovations in wearable and smart biosensors This book is aimed at advanced students, researchers, and academics across a broad interdisciplinary field including biochemical, pharmaceutical, and environmental engineering as well as materials science, analytical chemistry, and biosciences.




Impedance Spectroscopy and its Application in Biological Detection


Book Description

This book includes basics of impedance spectroscopy technology, substrate compatibility issues, integration capabilities, and several applications in the detection of different analytes. It helps explore the importance of this technique in biological detection, related micro/nanofabricated platforms and respective integration, biological synthesis schemes to carry out the detection, associated challenges, and related future directions. The various qualitative/quantitative findings of several modules are summarized in the form of the detailed descriptions, schematics, and tables. Features: Serves as a single source for exploring underlying fundamental principles and the various biological applications through impedance spectroscopy. Includes chapters based on nonbiological applications of impedance spectroscopy and IoT-enabled impedance spectroscopy-based methods for detection. Discusses derivations, substrates, applications, and several integrations. Describes micro/nanofabrication of impedance-based biological sensors. Reviews updated integrations like digital manufacturing and IoT. This book is aimed at researchers and graduate students in material science, impedance spectroscopy, and biosensing.




Lab-on-a-chip Devices for Advanced Biomedicines


Book Description

The global miniature devices market is poised to surpass a valuation of $12–$15 billion USD by the year 2030. Lab-on-a-chip (LOC) devices are a vital component of this market. Comprising a network of microchannels, electrical circuits, sensors, and electrodes, LOC is a miniaturized integrated device platform used to streamline day-to-day laboratory functions, run cost-effective clinical analyses and curb the need for centralized instrumentation facilities in remote areas. Compact design, portability, ease of operation, low sample volume, short reaction time, and parallel investigation stand as the pivotal factors driving the widespread acceptance of LOC within the biomedical community. In this book, the Editors meticulously explore LOC through three key ‘Ts’: Theories (microfluidics, microarrays, instrumentation, software); Technologies (additive manufacturing, artificial intelligence, computational thinking, smart consumables, scale-up tactics, and biofouling); and Trends (biomedical analysis, point-of-care diagnostics, personalized healthcare, bioactive synthesis, disease diagnosis, and space applications) This comprehensive text not only provides readers with a thorough understanding of the current advancements in the LOC domain but also offers valuable insights to support the utilization of miniaturized devices for enhanced healthcare practices. Aimed at career researchers looking for instruction in the topic and newcomers to the area, the book is also useful for undergraduate and postgraduate students embarking on new studies or for those interested in reading about the LOC platform.




Nanomaterials in Manufacturing Processes


Book Description

In the manufacturing sector, nanomaterials offer promising outcomes for cost reduction in production, quality improvement, and minimization of environmental hazards. This book focuses on the application of nanomaterials across a wide range of manufacturing areas, including in paint and coatings, petroleum refining, textile and leather industries, electronics, energy storage devices, electrochemical sensors, as well as in industrial waste treatment. This book: Examines nanofluids and nanocoatings in manufacturing and their characterization. Discusses nanomaterial applications in fabricating lightweight structural components, oil refining, smart leather processing and textile industries, and the construction industry. Highlights the role of 3D printing in realizing the full potential of nanotechnology. Considers synthetic strategies with a focus on greener protocols for the fabrication of nanostructured materials with enhanced properties and better control, including these materials' characterization and significant properties for ensuring smart outputs. Offers a unique perspective on applications in industrial waste recycling and treatment, along with challenges in terms of safety, economics, and sustainability in industrial processes. This work is written for researchers and industry professionals across a variety of engineering disciplines, including materials, manufacturing, process, and industrial engineering.




Microbial Systematics


Book Description

Microbial species isolated from extreme and pristine habitats are always diverse, which indicates biomolecules secreted by these species might have importance. A cure for disease is a desire considering the catastrophic situations that threaten the lives of humans and animals. Currently, the world is facing the health, social and economic, and diplomatic impacts of infectious communicable diseases caused by bacteria and viruses. It is a necessity to understand the huge microbial diversity residing everywhere with us in this world. Microorganisms are species that were born at the start of “life” and will stay after the end of all other forms of life in this world. This unseen majority has significant effects on the biogeochemical cycle as well as has numerous medical and non-medical applications. So, the ability of microorganisms to produce bioactive compounds and how they can be used in different fields, especially medicine and health care, have been discussed in this book.




Inorganic-Organic Composites for Water and Wastewater Treatment


Book Description

This second volume on ''Inorganic-Organic Composites for Water and Wastewater Treatment'' reviews research findings on advanced materials and methods for purification. Considering the fact that new emerging pollutants are released into the environment and water bodies, it is necessary to develop more advanced techniques in order to treat them. The utilization of metal – organic framework in view of applications, synthesis, properties like adsorption, characterization of the electronic and geometric aspects, and hybrid systems is reiewed in this book, and the advantages/disadvantages, shortcomings including future prospects associated with metal-based nanoparticles and nanocomposites for water decontamination are discussed. In addition, the use of carbon quantum dots, supramolecular ion-exchange resins, multifunctional composite aerogels, algal biomass valorization and titania-containing composites in treatment processes are also presented.




Microfluidic Technologies For Human Health


Book Description

The field of microfluidics has in the last decade permeated many disciplines, from physics to biology and chemistry, and from bioengineering to medical research. One of the most important applications of lab-on-a-chip devices in medicine and related disciplines is disease diagnostics, which involves steps from biological sample/analyte loading to storage, detection, and analysis. The chapters collected in this book detail recent advances in these processes using microfluidic devices and systems. The reviews of portable devices for diagnostic purposes are likely to evoke interest and raise new research questions in interdisciplinary fields (e.g., efficient MEMS/microfluidic engineering driven by biological and medical applications).The variety of the selected topics (general relevance of microfluidics in medical and bioengineering research, fabrication, advances in on-chip sample detection and analysis, and specific disease models) ensures that each of them can be viewed in the larger context of microfluidic-mediated diagnostics.




Pharmaceutical Biotechnology


Book Description

Pharmaceutical Biotechnology: A Focus on Industrial Application covers the development of new biopharmaceuticals as well as the improvement of those being produced. The main purpose is to provide background and concepts related to pharmaceutical biotechnology, together with an industrial perspective. This is a comprehensive text for undergraduates, graduates and academics in biochemistry, pharmacology and biopharmaceutics, as well as professionals working on the interdisciplinary field of pharmaceutical biotechnology. Written with educators in mind, this book provides teachers with background material to enhance their classes and offers students and other readers an easy-to-read text that examines the step-by-step stages of the development of new biopharmaceuticals. Features: Discusses specific points of great current relevance in relation to new processes as well as traditional processes Addresses the main unitary operations used in the biopharmaceutical industry such as upstream and downstream Includes chapters that allow a broad evaluation of the production process Dr. Adalberto Pessoa Jr. is Full Professor at the School of Pharmaceutical Sciences of the University of São Paulo and Visiting Senior Professor at King’s College London. He has experience in enzyme and fermentation technology and in the purification processes of biotechnological products such as liquid–liquid extraction, cross-flow filtration and chromatography of interest to the pharmaceutical and food industries. Dr. Michele Vitolo is Full Professor at the School of Pharmaceutical Sciences of the University of São Paulo. He has experience in enzyme technology, in immobilization techniques (aiming the reuse of the biocatalyst) and in the operation of membrane reactors for obtaining biotechnological products of interest to the pharmaceutical, chemical and food industries. Dr. Paul F. Long is Professor of Biotechnology at King's College London and Visiting International Research Professor at the University of São Paulo. He is a microbiologist by training and his research uses a combination of bioinformatics, laboratory and field studies to discover new medicines from nature, particularly from the marine environment.