Advances in Modeling and Interpretation in Near Surface Geophysics


Book Description

This book deals primarily with the aspects of advances in near surface geophysical data modeling, different interpretation techniques, new ideas and an integrated study to delineate the subsurface structures. It also involves the practical application of different geophysical methods to delineate the subsurface structures associated with mineral, groundwater exploration, subsurface contamination, hot springs, coal fire etc. This book is specifically aimed with the state-of-art information regarding research advances and new developments in these areas of study, coupled to extensive modeling and field investigations obtained from around the world. It is extremely enlightening for the research workers, scientists, faculty members and students, in Applied Geophysics, Near Surface Geophysics, Potential Field, Electrical and Electromagnetic Methods, Mathematical Modeling Techniques in Earth Sciences, as well as Environmental Geophysics.




Innovation in Near-Surface Geophysics


Book Description

Innovation in Near-Surface Geophysics: Instrumentation, Application, and Data Processing Methods offers an advanced look at state-of-the-art and innovative technologies for near surface geophysics, exposing the latest, most effective techniques in an accessible way. By addressing a variety of geophysical applications, including cultural heritage, civil engineering, characteristics of soil, and others, the book provides an understanding of the best products and methodologies modern near surface geophysics has to offer. It proposes tips for new ideas and projects, and encourages collaboration across disciplines and techniques for the best implementation and results.Clearly organized, with contributions from leaders from throughout geophysics, Innovation in Near-Surface Geophysics is an important guide for geophysicists who hope to gain a better understanding of the tools and techniques available. - Addresses a variety of applications in near-surface geophysics, including cultural heritage, civil engineering, soil analysis, etc. - Provides insight to available products and techniques and offers suggestions for future developments - Clearly organized by techniques and their applications




Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging


Book Description

Written for practicing geophysicists, “Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging” is a comprehensive guide to understanding and interpreting seismic data. The culmination of land seismic data acquisition and processing projects conducted by the author over the last two decades, this book contains more than nearly 800 figures from worldwide case studies—conducted in both 2D and 3D. Beginning with Chapter 1 on seismic characterization of the near-surface, Chapter 2 presents near-surface modeling by traveltime and full-wave inversion, Chapter 3 presents near-surface modeling by imaging, and then Chapter 4 includes detailed case studies for near-surface modeling. Chapter 5 reviews single- and multichannel signal processing of land seismic data with the key objective of removing surface waves and guided waves that are characterized as coherent linear noise. Uncommon seismic data acquisition methods, including large-offset acquisition in thrust belts to capture the large-amplitude supercritical reflections, swath-line acquisition, and joint PP and SH- SH seismic imaging are highlighted in Chapter 6, and Chapter 7 presents image-based rms velocity estimation and discusses the problem of velocity uncertainty. The final two chapters focus exclusively on case studies: 2D in Chapter 8 and 3D in Chapter 9. An outstanding teaching tool, this book includes analysis workflows containing processing steps designed to solve specific problems. Essential for anyone involved in acquisition, processing, and inversion of seismic data, this volume will become the definitive reference for understanding how the variables in seismic acquisition are directly reflected in the data.




Advances in Near-surface Seismology and Ground-penetrating Radar, Volume 15


Book Description

Advances in Near-surface Seismology and Ground-penetrating Radar (SEG Geophysical Developments Series No. 15) is a collection of original papers by renowned and respected authors from around the world. Technologies used in the application of near-surface seismology and ground-penetrating radar have seen significant advances in the last several years. Both methods have benefited from new processing tools, increased computer speeds, and an expanded variety of applications. This book, divided into four sections--"Reviews," "Methodology," "Integrative Approaches," and "Case Studies"--Captures the most significant cutting-edge issues in active areas of research, unveiling truly pertinent studies that address fundamental applied problems. This collection of manuscripts grew from a core group of papers presented at a post-convention workshop, "Advances in Near-surface Seismology and Ground-penetrating Radar," held during the 2009 SEG Annual Meeting in Houston, Texas. This is the first cooperative publication effort between the near-surface communities of SEG, AGU, and EEGS. It will appeal to a large and diverse audience that includes researchers and practitioners inside and outside the near-surface geophysics community. --Publisher description.




Near-surface Geophysics


Book Description

Part 1, "fundamentals", includes magnetic and electrical methods, subsurface geophysics, near-surface seismology, electromagnetic induction, and ground-penetrating radar. Part 2, "applications", includes determination of physical properties, multimethod surveys and integrated interpretations, and model-based survey planning, execution, and interpretation.




Self-Potential Method: Theoretical Modeling and Applications in Geosciences


Book Description

The book deals primarily with the aspects of advances in Self-Potential geophysical data modeling, different interpretation techniques, new ideas and an integrated study to delineate the subsurface structures associated with exploration, contamination, buried paleochannels, archaeological investigations, glaciology, geomorphology, subsurface mapping and also in hydrocarbon exploration.The book is specifically aimed with the state-of-art information regarding research advances and new development in these areas of study, coupled to extensive modelling and field investigations obtained from around the world. It is extremely enlightening for the students, research workers, scientists, faculty members in Applied Geophysics, Near Surface Geophysics, Potential field, Electrical and Electromagnetic methods, Mathematical Modeling Techniques in Earth Sciences, as well as Environmental and other practical problems associated with Earth Sciences.




Near-Surface Applied Geophysics


Book Description

A refreshing, up-to-date exploration of the latest developments in near-surface techniques, for advanced-undergraduate and graduate students, and professionals.




Introduction to Petroleum Seismology, second edition


Book Description

Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.




Active Geophysical Monitoring


Book Description

Active geophysical monitoring is an important new method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. It is based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources. In this book, the results of strategic systematic development and the application of new technologies for active geophysical monitoring are presented. The authors demonstrate that active monitoring may drastically change solid Earth geophysics, through the acquisition of substantially new information, based on high accuracy and real-time observations. Active monitoring also provides new means for disaster mitigation, in conjunction with substantial international and interdisciplinary cooperation. - Introduction of a new concept - Most experienced authors in the field - Comprehensiveness




Surface Wave Methods for Near-Surface Site Characterization


Book Description

Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors’ experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.