Advances in Modeling and Management of Urban Water Networks


Book Description

The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.




Advances in Modeling and Management of Urban Water Networks


Book Description

The Special Issue on Advances in Modeling and Management of Urban Water Networks (UWNs) explores four important topics of research in the context of UWNs: asset management, modeling of demand and hydraulics, energy recovery, and pipe burst identification and leakage reduction. In the first topic, the multi-objective optimization of interventions on the network is presented to find trade-off solutions between costs and efficiency. In the second topic, methodologies are presented to simulate and predict demand and to simulate network behavior in emergency scenarios. In the third topic, a methodology is presented for the multi-objective optimization of pump-as-turbine (PAT) installation sites in transmission mains. In the fourth topic, methodologies for pipe burst identification and leakage reduction are presented. As for the urban drainage systems (UDSs), the two explored topics are asset management, with a system upgrade to reduce flooding, and modeling of flow and water quality, with analyses on the transition from surface to pressurized flow, impact of water use reduction on the operation of UDSs, and sediment transport in pressurized pipes. The Special Issue also includes one paper dealing with the hydraulic modeling of an urban river with a complex cross-section.




Advanced Simulation and Modeling for Urban Groundwater Management - UGROW


Book Description

Advanced Simulation and Modelling for Urban Groundwater Management - UGROW Groundwater plays a vital role in the urban water cycle but is frequently ignored. The assessment and evaluation of urban water systems rarely consider the contribution of groundwater to the urban water budget, and available decision-support tools for integrated urban water management often fail to include aquifer storage and the strong two-way interaction that commonly occurs between groundwater and surface water and other urban water system components. Advanced Simulation and Modelling for Urban Groundwater Management - UGROW presents the result of a project of UNESCO's International Hydrological Programme on the topic. The book presents UGROW - a complete and fully integrated Modelling package - for simulating urban water systems. As a decision-support tool for urban water management, it focuses on urban groundwater, but all other key urban water system elements are fully represented and seamlessly linked. The theory behind UGROW is thoroughly described in the book, with three case studies illustrating how UGROW can be applied in practice. A CD-ROM containing a fully functional version of UGROW is included in the book.




Urban Hydroinformatics


Book Description

This book is an introduction to hydroinformatics applied to urban water management. It shows how to make the best use of information and communication technologies for manipulating information to manage water in the urban environment. The book covers the acquisition and analysis of data from urban water systems to instantiate mathematical models or calculations, which describe identified physical processes. The models are operated within prescribed management procedures to inform decision makers, who are responsible to recognized stakeholders. The application is to the major components of the urban water environment, namely water supply, treatment and distribution, wastewater and stormwater collection, treatment and impact on receiving waters, and groundwater and urban flooding. Urban Hydroinformatics pays particular attention to modeling, decision support through procedures, economics and management, and implementation in both developed and developing countries. The book is written with post-graduates, researchers and practicing engineers who are involved in urban water management and want to improve the scope and reliability of their systems.




Advanced Water Distribution Modeling and Management


Book Description

Accompanying CD-ROM includes: a 25-pipe academic version of WaterCAD with stand-alone interface; the WaterCAD files for individual problems; the WaterCAD user manual and an examination booklet for continuing education credits; Adobe Acrobat Reader software for viewing the manual and booklet.




Advanced Modelling and Innovations in Water Resources Engineering


Book Description

This book presents select proceedings of the national conference on Advanced Modelling and Innovations in Water Resources Engineering (AMIWRE 2021) and examines numerous advancements in the field of water resources engineering and management towards sustainable development of environment. The topics covered includes river basin planning and development, reservoir planning and management, integrated water management, reservoir sedimentation, soil erosion and sedimentation, agricultural technologies for climate change mitigation, uncertainty analysis in hydrology, water distribution networks, floods and droughts management, water quality modelling, environmental modelling, environmental impact assessment, urban water management, open channel hydraulics, hydraulic structures, groundwater hydraulics, groundwater flow and contaminant transport modelling, computational fluid dynamics, ocean engineering, HEC-RAC, SWAT, MIKE, MODFLOW models applications, numerical analysis in water resources engineering, climate change impacts on hydrology, optimization techniques in water resources, soft computing techniques and applications in water resources and remote sensing / geospatial techniques in water resources. This book will be beneficial for water sectors development mainly agricultural production, reservoir operations, improvement of water quality, flood and drought controls, designing hydraulic structures and geospatial analysis. This book will be a valuable reference for faculties, research scholars, students, design engineers, industrialists, R & D personnel and practitioners working in water resources engineering and its related fields.




Urban Water Engineering and Management


Book Description

Based on the latest developments research, this book delineates a systems approach urban water hydrology, engineering, planning, and management. It covers a range of classic urban water management issues such as the modeling of urban water cycles, urban water supply and distribution systems, demand forecasting, wastewater and storm water collection and treatment.




Water Systems Analysis, Design, and Planning


Book Description

This book presents three distinct pillars for analysis, design, and planning: urban water cycle and variability as the state of water being; landscape architecture as the medium for built-by-design; and total systems as the planning approach. The increasing demand for water and urban and industrial expansions have caused myriad environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the resiliency and ability of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our water resources. Focusing on urban challenges and contexts, the book provides foundational information regarding water science and engineering while also examining topics relating to urban stormwater, water supply, and wastewater infrastructures. It also addresses critical emerging issues such as simulation and economic modeling, flood resiliency, environmental visualization, satellite data applications, and digital data model (DEM) advancements. Features: Explores various theoretical, practical, and real-world applications of system analysis, design, and planning of urban water infrastructures Discusses hydrology, hydraulics, and basic laws of water flow movement through natural and constructed environments Describes a wide range of novel topics ranging from water assets, water economics, systems analysis, risk, reliability, and disaster management Examines the details of hydrologic and hydrodynamic modeling and simulation of conceptual and data-driven models Delineates flood resiliency, environmental visualization, pattern recognition, and machine learning attributes Explores a compilation of tools and emerging techniques that elevate the reader to a higher plateau in water and environmental systems management Water Systems Analysis, Design, and Planning: Urban Infrastructure serves as a useful resource for advanced undergraduate and graduate students taking courses in the areas of water resources and systems analysis, as well as practicing engineers and landscape professionals.




Urban Water Cycle Modelling and Management


Book Description

This book is a printed edition of the Special Issue "Urban Water Cycle Modelling and Management" that was published in Water




Smart Urban Water Networks


Book Description

This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems.