Advances in Neural Networks - ISNN 2017


Book Description

This book constitutes the refereed proceedings of the 14th International Symposium on Neural Networks, ISNN 2017, held in Sapporo, Hakodate, and Muroran, Hokkaido, Japan, in June 2017. The 135 revised full papers presented in this two-volume set were carefully reviewed and selected from 259 submissions. The papers cover topics like perception, emotion and development, action and motor control, attractor and associative memory, neurodynamics, complex systems, and chaos.




Advances in Neural Networks – ISNN 2018


Book Description

This book constitutes the refereed proceedings of the 15th International Symposium on Neural Networks, ISNN 2018, held in Minsk, Belarus in June 2018.The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical engineering, clustering, classification, forecasting, models, algorithms, cognitive computation, machine learning, and optimization.​




Advances in Neural Networks – ISNN 2019


Book Description

This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.




Advances in Neural Networks – ISNN 2020


Book Description

This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.




Advances in Neural Networks – ISNN 2016


Book Description

This book constitutes the refereed proceedings of the 13th International Symposium on Neural Networks, ISNN 2016, held in St. Petersburg, Russia in July 2016. The 84 revised full papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers cover many topics of neural network-related research including signal and image processing; dynamical behaviors of recurrent neural networks; intelligent control; clustering, classification, modeling, and forecasting; evolutionary computation; and cognition computation and spiking neural networks.




The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems


Book Description

The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems discusses the recent, rapid development of Internet of things (IoT) and its focus on research in smart cities, especially on surveillance tracking systems in which computing devices are widely distributed and huge amounts of dynamic real-time data are collected and processed. Efficient surveillance tracking systems in the Big Data era require the capability of quickly abstracting useful information from the increasing amounts of data. Real-time information fusion is imperative and part of the challenge to mission critical surveillance tasks for various applications. This book presents all of these concepts, with a goal of creating automated IT systems that are capable of resolving problems without demanding human aid. - Examines the current state of surveillance tracking systems, cognitive cloud architecture for resolving critical issues in surveillance tracking systems, and research opportunities in cognitive computing for surveillance tracking systems - Discusses topics including cognitive computing architectures and approaches, cognitive computing and neural networks, complex analytics and machine learning, design of a symbiotic agent for recognizing real space in ubiquitous environments, and more - Covers supervised regression and classification methods, clustering and dimensionality reduction methods, model development for machine learning applications, intelligent machines and deep learning networks - includes coverage of cognitive computing models for scalable environments, privacy and security aspects of surveillance tracking systems, strategies and experiences in cloud architecture and service platform design




Artificial Intelligence in the Age of Neural Networks and Brain Computing


Book Description

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks




Neural Networks for Pattern Recognition


Book Description

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.




Deep Learning and Convolutional Neural Networks for Medical Image Computing


Book Description

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.




Pattern Recognition and Neural Networks


Book Description

This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.