Advances in Information Optics and Photonics


Book Description

In this age of the photon, information optics and photonics represent the key technologies to sustain our knowledge-based society. New concepts in classical and quantum-entangled light, coherent interaction with matter, and novel materials and processes have led to remarkable advances in today's information science and technology. The ICO is closely involved with information optics, as exemplified by the ICO topical meeting on Optoinformatics / Information Photonics (St. Petersburg, Russia, 2006), the ICO/ICTP Winter College on Quantum and Classical Aspects of Information Optics (Trieste, Italy, 2006), and the many ICO Prizes recently awarded on outstanding contributions on these topics. This book is in part based on these ICO activities.




Optics and Photonics


Book Description

Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad-including market trends, workforce needs, and the impact of photonics on the national economy. It identifies the technological opportunities that have arisen from recent advances in, and applications of, optical science and engineering. The report also calls for improved management of U.S. public and private research and development resources, emphasizing the need for public policy that encourages adoption of a portfolio approach to investing in the wide and diverse opportunities now available within photonics. Optics and Photonics: Essential Technologies for our Nation is a useful overview not only for policymakers, such as decision-makers at relevant Federal agencies on the current state of optics and photonics research and applications but also for individuals seeking a broad understanding of the fields of optics and photonics in many arenas.




Advances in Nonlinear Optics


Book Description

This book presents an overview of the state of the art of the developing topic of nonlinear optics with contributions from leading experts in the field in China, ranging from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. In the past decade, nonlinear optics has evolved into many different branches, depending on the form of the material used for studying the nonlinear phenomena. The growth of research in nonlinear optics is closely linked to the rapid technological advances that have occurred in related fields, such as ultra-fast phenomena and optical communications. Nonlinear-optics activities range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology. This book reviews the development of some nonlinear optics researches in China, not only the discovery of new principles, but also potential applications of nonlinear optics for various industries.




Advances in Optical Form and Coordinate Metrology


Book Description

Advances in Optical Form and Coordinate Metrology covers the latest advances in the development of optical form and coordinate measuring instruments plus the manipulation of point cloud data. The book presents some basic principles of the optical measurement methods and takes a deeper look at the operation of the instruments and the new application areas where they can be applied, with an emphasis on advanced manufacturing. Latest advances discussed include the drive towards faster instruments for in-process applications, the ability to measure highly complex objects (in e.g. additive manufacturing), performance verification and advances in the use of machine learning to enhance data analysis. Part of IOP Series in Emerging Technologies in Optics and Photonics.




Advanced Free Space Optics (FSO)


Book Description

This title provides a comprehensive, unified tutorial covering the most recent advances in the emerging technology of free-space optics (FSO), a field in which interest and attention continue to grow along with the number of new challenges. This book is intended as an all-inclusive source to serve the needs of those who require information about the fundamentals of FSO, as well as up-to-date advanced knowledge of the state-of-the-art in the technologies available today. This text is intended for graduate students, and will also be useful for research scientists and engineers with an interest in the field. FSO communication is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond what is possible in the Radio Frequency (RF) range. However, the attributes of atmospheric turbulence and scattering impose perennial limitations on availability and reliability of FSO links. From a systems point-of-view, this groundbreaking book provides a thorough understanding of channel behavior, which can be used to design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions. Topics addressed include: • FSO Physical and Statistical Models: Single/Multiple Inputs/Outputs • Understanding FSO: Theory and Systems Analysis • Modulation and Coding for Free-Space Optical Channels • Atmospheric Mitigation and Compensation for FSO Links • Non-line-of-sight (NLOS) Ultraviolet and Indoor FSO Communications • FSO Platforms: UAV and Mobile • Retromodulators for Free Space Data links • Hybrid Optical RF Communications • Free-space and Atmospheric Quantum Communications • Other related topics: Chaos-based and Terahertz (THz) FSO Communications




Polarized Light and Optical Systems


Book Description

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.




Advanced Materials for Integrated Optical Waveguides


Book Description

This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, decreased interconnect delays, resistance to electromagnetic interference, and reduced crosstalk when integrated into standard electronic circuits. Integrated waveguide optics represents a truly multidisciplinary field of science and engineering, with continued growth requiring new developments in modeling, further advances in materials science, and innovations in integration platforms. In addition, the processing and fabrication of these new devices must be optimized in conjunction with the development of accurate and precise characterization and testing methods. Students and professionals in materials science and engineering will find Advanced Materials for Integrated Optical Waveguides to be an invaluable reference for meeting these research and development goals.




Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.




Advances in Optics, Vol. 3


Book Description

'Advances in Optics: Reviews' Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. The Vol.3 is devoted to various topics of applied optics and contains 17 chapters written by 49 experts in the field from 14 countries: Australia, China, India, Israel, Italy, Japan, Malaysia, Mexico, The Netherlands, Poland, Taiwan, UK, USA, Vietnam A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students.




Organic Nonlinear Optical Materials


Book Description

Organic Nonlinear Optical Materials provides an extensive description of the preparation and characterization of organic materials for applications in nonlinear and electro-optics. The book discusses the fundamental optimization and practical limitations of a number of figures of merit for various optical parameters and gives a clinical appraisal of the potential of organic materials for applicators in optical technology. Among the topics addressed are the basic molecular design of ;nonlinear optical chromophores, fundamentals and novel techniques of organic crystal growth, preparation and characterization of Langmuir-Blodgett and polymer films, experimental methods for determining microscopic and macroscopic optical properties. Also included is a discussion of first results of the photorefractive effect in organic crystals and the potential of organics for photorefractive applications, as well as an extensive review of published linear and nonlinear optical measurement of organic materials.