Advances in Probability Distributions with Given Marginals


Book Description

'Et moi - ... - si j'avait su comment en rcvenir. One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canistcr labelled 'discarded non sense'. The scries is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.




Distributions With Given Marginals and Statistical Modelling


Book Description

This volume contains the papers presented at the meeting "Distributions with given marginals and statistical modelling", held in Barcelona (Spain), July 17- 20, 2000. This is the fourth meeting on given marginals, showing that this topic has aremarkable interest. BRIEF HISTORY The construction of distributions with given marginals started with the seminal papers by Hoeffding (1940) and Fn!chet (1951). Since then, many others have contributed on this topic: Dall' Aglio, Farlie, Gumbel, Johnson, Kellerer, Kotz, Morgenstern, Marshali, Olkin, Strassen, Vitale, Whitt, etc., as weIl as Arnold, Cambanis, Deheuvels, Genest, Frank, Joe, Kirneldorf, Nelsen, Rüschendorf, Sampson, Scarsini, Tiit, etc. In 1957 Sklar and Schweizer introduced probabilistic metric spaces. In 1975 Kirneldorf and Sampson studied the uniform representation of a bivariate dis tribution and proposed the desirable conditions that should be satisfied by any bivariate family. In 1991 Darsow, Nguyen and Olsen defined a natural operation between cop ulas, with applications in stochastic processes. In 1993, AIsina, Nelsen and Schweizer introduced the notion of quasi-copula




Distributions with given Marginals and Moment Problems


Book Description

The last decade has seen a remarkable development of the "Marginal and Moment Problems" as a research area in Probability and Statistics. Its attractiveness stemmed from its lasting ability to provide a researcher with difficult theoretical problems that have direct consequences for appli cations outside of mathematics. The relevant research aims centered mainly along the following lines that very frequently met each other to provide sur prizing and useful results : -To construct a probability distribution (to prove its existence, at least) with a given support and with some additional inner stochastic property defined typically either by moments or by marginal distributions. -To study the geometrical and topological structure of the set of prob ability distributions generated by such a property mostly with the aim to propose a procedure that would result in a stochastic model with some optimal properties within the set of probability distributions. These research aims characterize also, though only very generally, the scientific program of the 1996 conference "Distributions with given marginals and moment problems" held at the beginning of September in Prague, Czech Republic, to perpetuate the tradition and achievements of the closely related 1990 Roma symposium "On Frechet Classes" 1 and 1993 Seattle" AMS Summer Conference on Marginal Problem".




Advances in Probability Distributions with Given Marginals


Book Description

'Et moi *...* si j'avait su comment en rcvenir. One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canistcr labelled 'discarded non­ sense'. The scries is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.







Computing and Combinatorics


Book Description

The book is aimed at graduate students, researchers, engineers and physicists involved in fluid computations. An up-to-date account is given of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary methods. Attention is given to the difficulties arising from geometric complexity of the flow domain. Uniform accuracy for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Unified methods for compressible and incompressible flows are discussed. A treatment of the shallow-water equations is included. A basic introduction is given to efficient iterative solution methods. Many pointers are given to the current literature, facilitating further study.




An Introduction to Copulas


Book Description

Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.




Copulas and Dependence Models with Applications


Book Description

This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.




Advances on Models, Characterizations and Applications


Book Description

Statistical distributions are one of the most important applied mathematical tools across a wide spectrum of disciplines, including engineering, biological sciences, and health and social sciences. Since they are used to model observed data and ultimately to develop inferential procedures, understanding the properties of statistical distributions i




Copula Theory and Its Applications


Book Description

Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.