Advances in Real and Complex Analysis with Applications


Book Description

This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22–26 August 2016. The book is a valuable resource for researchers in real and complex analysis.




Real and Complex Clifford Analysis


Book Description

Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors’ investigations, and this new monograph will be interesting for researchers studying the theory of functions.




Complex Analysis with Applications


Book Description

The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.




Real and Complex Analysis


Book Description

This is the first volume of the two-volume book on real and complex analysis. This volume is an introduction to measure theory and Lebesgue measure where the Riesz representation theorem is used to construct Lebesgue measure. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into three chapters, it discusses exponential and measurable functions, Riesz representation theorem, Borel and Lebesgue measure, -spaces, Riesz–Fischer theorem, Vitali–Caratheodory theorem, the Fubini theorem, and Fourier transforms. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which are the work of great mathematicians of the 19th and 20th centuries.




Real and Complex Analysis


Book Description

This is the second volume of the two-volume book on real and complex analysis. This volume is an introduction to the theory of holomorphic functions. Multivalued functions and branches have been dealt carefully with the application of the machinery of complex measures and power series. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into four chapters, it discusses holomorphic functions and harmonic functions, Schwarz reflection principle, infinite product and the Riemann mapping theorem, analytic continuation, monodromy theorem, prime number theorem, and Picard’s little theorem. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which are the work of great mathematicians of the 19th and 20th centuries.




A Guide to Advanced Real Analysis


Book Description

A concise guide to the core material in a graduate level real analysis course.




Advances in Complex Analysis and Applications


Book Description

The complex analysis, also known as theory of analytic functions or complex variable function theory, is the part of mathematical analysis that investigates the functions of complex numbers, their analyticity, holomorphicity, and integration of these functions on complex domains that can be complex manifolds or submanifolds. Also the extensions of these domains to the complex projective spaces and complex topological groups are study themes. The analytic continuing of complex domains where complex series representations are used and the exploring of singularities whose integration invariants obtain values as zeros of certain polynomials of the complex rings of certain vector bundles are important in the exploring of new function classes in the meromorphic context and also arithmetic context. Also important are established correspondences with complex vector spaces, or even in their real parts, using several techniques of complex geometrical analysis, Nevanlinna methods, and other techniques as the modular forms. All this is just some examples of great abundance of the problems in mathematics research that require the complex analysis application. This book covers some interesting and original research of certain topics of complex analysis. Also included are some applications for inverse and ill posed problems developed in engineering and applied research.




Introduction to Complex Variables and Applications


Book Description

The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painlevé equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.




Probability


Book Description

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.




Applied Complex Variables


Book Description

Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.