Advances in Shannon's Sampling Theory


Book Description

Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gröchenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.




Advances in Shannon's Sampling Theory


Book Description

Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gröchenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.




Advances in Shannon's Sampling Theory


Book Description

Advances in Shannon's Sampling Theory provides an up-to-date discussion of sampling theory, emphasizing the interaction between sampling theory and other branches of mathematical analysis, including the theory of boundary-value problems, frames, wavelets, multiresolution analysis, special functions, and functional analysis. The author not only traces the history and development of the theory, but also presents original research and results that have never before appeared in book form. Recent techniques covered include the Feichtinger-Gröchenig sampling theory; frames, wavelets, multiresolution analysis and sampling; boundary-value problems and sampling theorems; and special functions and sampling theorems. The book will interest graduate students and professionals in electrical engineering, communications, and applied mathematics.




Lattice Point Identities and Shannon-Type Sampling


Book Description

Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.




Advanced Topics in Shannon Sampling and Interpolation Theory


Book Description

Advanced Topics in Shannon Sampling and Interpolation Theory is the second volume of a textbook on signal analysis solely devoted to the topic of sampling and restoration of continuous time signals and images. Sampling and reconstruction are fundamental problems in any field that deals with real-time signals or images, including communication engineering, image processing, seismology, speech recognition, and digital signal processing. This second volume includes contributions from leading researchers in the field on such topics as Gabor's signal expansion, sampling in optical image formation, linear prediction theory, polar and spiral sampling theory, interpolation from nonuniform samples, an extension of Papoulis's generalized sampling expansion to higher dimensions, and applications of sampling theory to optics and to time-frequency representations. The exhaustive bibliography on Shannon sampling theory will make this an invaluable research tool as well as an excellent text for students planning further research in the field.




Nonuniform Sampling


Book Description

Our understanding of nature is often through nonuniform observations in space or time. In space, one normally observes the important features of an object, such as edges. The less important features are interpolated. History is a collection of important events that are nonuniformly spaced in time. Historians infer between events (interpolation) and politicians and stock market analysts forecast the future from past and present events (extrapolation). The 20 chapters of Nonuniform Sampling: Theory and Practice contain contributions by leading researchers in nonuniform and Shannon sampling, zero crossing, and interpolation theory. Its practical applications include NMR, seismology, speech and image coding, modulation and coding, optimal content, array processing, and digital filter design. It has a tutorial outlook for practising engineers and advanced students in science, engineering, and mathematics. It is also a useful reference for scientists and engineers working in the areas of medical imaging, geophysics, astronomy, biomedical engineering, computer graphics, digital filter design, speech and video processing, and phased array radar.




Sampling Theory in Fourier and Signal Analysis: Advanced Topics


Book Description

Volume 1 in this series laid the mathematical foundations of sampling theory; Volume 2 surveys the many applications of the theory both within mathematics and in other areas of science. Topics range over a wide variety of areas, and each application is given a modern treatment.




Modern Sampling Theory


Book Description

A state-of-the-art edited survey covering all aspects of sampling theory. Theory, methods and applications are discussed in authoritative expositions ranging from multi-dimensional signal analysis to wavelet transforms. The book is an essential up-to-date resource.




The Mathematical Theory of Communication


Book Description

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.




Quantum Information Theory


Book Description

A self-contained, graduate-level textbook that develops from scratch classical results as well as advances of the past decade.