Advances in Signal Transforms


Book Description

"Digital signal transforms are of a fundamental value in digital signal and image processing. Their role is manifold. Transforms selected appropriately enable substantial compressing signals and images for storage and transmission. No signal recovery, image reconstruction and restoration task can be efficiently solved without using digital signal transforms. Transforms are successfully used for logic design and digital data encryption. Fast transforms are the main tools for acceleration of computations in digital signal and image processing. The volume collects in one book most recent developments in the theory and practice of the design and usage of transforms in digital signal and image processing. It emerged from the series of reports published by Tampere International Centre for Signal Processing, Tampere University of Technology. For the volume, all contributions are appropriately updated to represent the state of the art in the field and to cover the most recent developments in different aspects of the theory and applications of transforms. The book consists of two parts that represent two major directions in the field: development of new transforms and development of transform based signal and image processing algorithms. The first part contains four chapters devoted to recent advances in transforms for image compression and switching and logic design and to new fast transforms for digital holography and tomography. In the second part, advanced transform based signal and image algorithms are considered: signal and image local adaptive restoration methods and two complementing families of signal and image re-sampling algorithms, fast transform based discrete sinc-interpolation and spline theory based ones."--Publisher.




Transforms and Fast Algorithms for Signal Analysis and Representations


Book Description

This book is a comprehensive presentation of recent results and developments on several widely used transforms and their fast algorithms. In many cases, new options are provided for improved or new fast algorithms, some of which are not well known in the digital signal processing community. The book is suitable as a textbook for senior undergraduate and graduate courses in digital signal processing. It may also serve as an excellent self-study reference for electrical engineers and applied mathematicians whose work is related to the fields of electronics, signal processing, image and speech processing, or digital design and communication.




Think DSP


Book Description

If you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.




Applied Signal Processing


Book Description

Being an inter-disciplinary subject, Signal Processing has application in almost all scientific fields. Applied Signal Processing tries to link between the analog and digital signal processing domains. Since the digital signal processing techniques have evolved from its analog counterpart, this book begins by explaining the fundamental concepts in analog signal processing and then progresses towards the digital signal processing. This will help the reader to gain a general overview of the whole subject and establish links between the various fundamental concepts. While the focus of this book is on the fundamentals of signal processing, the understanding of these topics greatly enhances the confident use as well as further development of the design and analysis of digital systems for various engineering and medical applications. Applied Signal Processing also prepares readers to further their knowledge in advanced topics within the field of signal processing.




Multiresolution Signal Decomposition


Book Description

This book provides an in-depth, integrated, and up-to-date exposition of the topic of signal decomposition techniques. Application areas of these techniques include speech and image processing, machine vision, information engineering, High-Definition Television, and telecommunications. The book will serve as the major reference for those entering the field, instructors teaching some or all of the topics in an advanced graduate course and researchers needing to consult an authoritative source.n The first book to give a unified and coherent exposition of multiresolutional signal decomposition techniquesn Classroom tested textbook clearly describes the commonalities among three key methods-transform coding, and wavelet transformsn Gives comparative performance evaluations of many proposed techniques




Discrete Wavelet Transform


Book Description

Provides easy learning and understanding of DWT from a signal processing point of view Presents DWT from a digital signal processing point of view, in contrast to the usual mathematical approach, making it highly accessible Offers a comprehensive coverage of related topics, including convolution and correlation, Fourier transform, FIR filter, orthogonal and biorthogonal filters Organized systematically, starting from the fundamentals of signal processing to the more advanced topics of DWT and Discrete Wavelet Packet Transform. Written in a clear and concise manner with abundant examples, figures and detailed explanations Features a companion website that has several MATLAB programs for the implementation of the DWT with commonly used filters “This well-written textbook is an introduction to the theory of discrete wavelet transform (DWT) and its applications in digital signal and image processing.” -- Prof. Dr. Manfred Tasche - Institut für Mathematik, Uni Rostock Full review at https://zbmath.org/?q=an:06492561




Orthogonal Transforms for Digital Signal Processing


Book Description

This book is intended for those wishing to acquire a working knowledge of orthogonal transforms in the area of digital signal processing. The authors hope that their introduction will enhance the opportunities for interdiscipli nary work in this field. The book consists of ten chapters. The first seven chapters are devoted to the study of the background, motivation and development of orthogonal transforms, the prerequisites for which are a basic knowledge of Fourier series transform (e.g., via a course in differential equations) and matrix al gebra. The last three chapters are relatively specialized in that they are di rected toward certain applications of orthogonal transforms in digital signal processing. As such, a knowlegde of discrete probability theory is an essential additional prerequisite. A basic knowledge of communication theory would be helpful, although not essential. Much of the material presented here has evolved from graduate level courses offered by the Departments of Electrical Engineering at Kansas State University and the University of Texas at Arlington, during the past five years. With advanced graduate students, all the material was covered in one semester. In the case of first year graduate students, the material in the first seven chapters was covered in one semester. This was followed by a prob lems project-oriented course directed toward specific applications, using the material in the last three chapters as a basis.







Advances in Heuristic Signal Processing and Applications


Book Description

There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a special emphasis on heuristic iterative optimization methods employing modern evolutionary and swarm intelligence based techniques. The applications considered are in domains such as communications engineering, estimation and tracking, digital filter design, wireless sensor networks, bioelectric signal classification, image denoising, and image feature tracking. The book presents interesting, state-of-the-art methodologies for solving real-world problems and it is a suitable reference for researchers and engineers in the areas of heuristics and signal processing.




The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing


Book Description

The growth in the field of digital signal processing began with the simulation of continuous-time systems in the 1950s, even though the origin of the field can be traced back to 400 years when methods were developed to solve numerically problems such as interpolation and integration. During the last 40 years, there have been phenomenal advances in the theory and application of digital signal processing. In many applications, the representation of a discrete-time signal or a sys tem in the frequency domain is of interest. To this end, the discrete-time Fourier transform (DTFT) and the z-transform are often used. In the case of a discrete-time signal of finite length, the most widely used frequency-domain representation is the discrete Fourier transform (DFT) which results in a finite length sequence in the frequency domain. The DFT is simply composed of the samples of the DTFT of the sequence at equally spaced frequency points, or equivalently, the samples of its z-transform at equally spaced points on the unit circle. The DFT provides information about the spectral contents of the signal at equally spaced discrete frequency points, and thus, can be used for spectral analysis of signals. Various techniques, commonly known as the fast Fourier transform (FFT) algorithms, have been advanced for the efficient com putation of the DFT. An important tool in digital signal processing is the linear convolution of two finite-length signals, which often can be implemented very efficiently using the DFT.