Advances in Teaching Organic Chemistry


Book Description

Discusses the latest thinking in the approach to teaching Organic Chemistry.







Advances in Teaching Inorganic Chemistry


Book Description

Innovative perspectives on teaching inorganic chemistryInorganic chemistry educators are engaged and creative scholars who are fervently committed to improving the development of their students. This volume provides narratives from practicing inorganic faculty who have developed original approaches to teaching at the collegiate level, including broadercurriculum issues and connections to the Interactive Online Network of Inorganic Chemists (IONiC) Community of Practice. As many institutions have shifted away from the traditional lecture format, this volume takes readers through the pros and cons of teaching inorganic chemistry in myriad ways.This book is full of innovative techniques and strategies for anyone teaching inorganic chemistry.







Advances in Teaching Physical Chemistry


Book Description

This book brings together the latest perspectives and ideas on teaching modern physical chemistry. It includes perspectives from experienced and well-known physical chemists, a thorough review of the education literature pertaining to physical chemistry, a thorough review of advances in undergraduate laboratory experiments from the past decade, in-depth descriptions of using computers to aid student learning, and innovative ideas for teaching the fundamentals of physical chemistry. This book will provide valuable insight and information to all teachers of physical chemistry.




Tools of Chemistry Education Research


Book Description

A companion to 'Nuts and Bolts of Chemical Education Research', 'Tools of Chemistry Education Research' provides a continuation of the dialogue regarding chemistry education research.




Problems and Problem Solving in Chemistry Education


Book Description

Problem solving is central to the teaching and learning of chemistry at secondary, tertiary and post-tertiary levels of education, opening to students and professional chemists alike a whole new world for analysing data, looking for patterns and making deductions. As an important higher-order thinking skill, problem solving also constitutes a major research field in science education. Relevant education research is an ongoing process, with recent developments occurring not only in the area of quantitative/computational problems, but also in qualitative problem solving. The following situations are considered, some general, others with a focus on specific areas of chemistry: quantitative problems, qualitative reasoning, metacognition and resource activation, deconstructing the problem-solving process, an overview of the working memory hypothesis, reasoning with the electron-pushing formalism, scaffolding organic synthesis skills, spectroscopy for structural characterization in organic chemistry, enzyme kinetics, problem solving in the academic chemistry laboratory, chemistry problem-solving in context, team-based/active learning, technology for molecular representations, IR spectra simulation, and computational quantum chemistry tools. The book concludes with methodological and epistemological issues in problem solving research and other perspectives in problem solving in chemistry. With a foreword by George Bodner.




Argumentation in Chemistry Education


Book Description

Many studies have highlighted the importance of discourse in scientific understanding. Argumentation is a form of scientific discourse that plays a central role in the building of explanations, models and theories. Scientists use arguments to relate the evidence that they select from their investigations and to justify the claims that they make about their observations. The implication is that argumentation is a scientific habit of mind that needs to be appropriated by students and explicitly taught through suitable instruction. Edited by Sibel Erduran, an internationally recognised expert in chemistry education, this book brings together leading researchers to draw attention to research, policy and practice around the inclusion of argumentation in chemistry education. Split into three sections: Research on Argumentation in Chemistry Education, Resources and Strategies on Argumentation in Chemistry Education, and Argumentation in Context, this book blends practical resources and strategies with research-based evidence. The book contains state of the art research and offers educators a balanced perspective on the theory and practice of argumentation in chemistry education.







Sputnik to Smartphones


Book Description

This book describes the profound changes that occurred in the teaching of chemistry in western countries in the years immediately following the Soviet Union's launch of Sputnik, the first artificial Earth satellite, in 1957. With substantial government and private funding, chemistry educators introduced new curricula, developed programs to enhance the knowledge and skills of chemistry teachers, conceived of new models for managing chemistry education, and experimented with a plethora of materials for visualization of concepts and delivery of content. They also began to seriously study and apply findings from the behavioral sciences to the teaching and learning of chemistry. Now, many chemistry educators are contributing original research in the cognitive sciences that relates to chemistry education. While Sputnik seemed to signal the dawn of far-reaching effects that would take place in political, diplomatic, and strategic, as well as in educational spheres, the seeds of these changes were sown decades before, mainly through the insight and actions of one individual, Neil Gordon, who, virtually singlehandedly, launched the ACS Division of Chemical Education and the Journal of Chemical Education. These two institutions provided the impetus for the United States to eventually become the undisputed leader in chemistry education worldwide.