Recent Advances in Nonlinear Dynamics and Synchronization


Book Description

The selected contributions of this book shed light on a series of interesting aspects related to nonlinear dynamics and synchronization with the aim of demonstrating some of their interesting applications in a series of selected disciplines. This book contains thirteenth chapters which are organized around five main parts. The first part (containing five chapters) does focus on theoretical aspects and recent trends of nonlinear dynamics and synchronization. The second part (two chapters) presents some modeling and simulation issues through concrete application examples. The third part (two chapters) is focused on the application of nonlinear dynamics and synchronization in transportation. The fourth part (two chapters) presents some applications of synchronization in security-related system concepts. The fifth part (two chapters) considers further applications areas, i.e. pattern recognition and communication engineering.




Advances On Nonlinear Dynamics Of Electronic Systems


Book Description

This book comprises the most recent advanced results on nonlinear electronic circuits, and the contents range from networks, synchronization, memristors to several other topics. Both theory and advanced timely results are included. It provides an overview of popular themes in the field of nonlinear dynamics of electronic circuits with contributions from outstanding scientists.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Dynamics of Nonlinear Time-Delay Systems


Book Description

Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. Last but not least, the presentation as a whole strives for a balance between the necessary mathematical description of the basics and the detailed presentation of real-world applications.




Backstepping Control of Nonlinear Dynamical Systems


Book Description

Backstepping Control of Nonlinear Dynamical Systems addresses both the fundamentals of backstepping control and advances in the field. The latest techniques explored include 'active backstepping control', 'adaptive backstepping control', 'fuzzy backstepping control' and 'adaptive fuzzy backstepping control'. The reference book provides numerous simulations using MATLAB and circuit design. These illustrate the main results of theory and applications of backstepping control of nonlinear control systems. Backstepping control encompasses varied aspects of mechanical engineering and has many different applications within the field. For example, the book covers aspects related to robot manipulators, aircraft flight control systems, power systems, mechanical systems, biological systems and chaotic systems. This multifaceted view of subject areas means that this useful reference resource will be ideal for a large cross section of the mechanical engineering community. - Details the real-world applications of backstepping control - Gives an up-to-date insight into the theory, uses and application of backstepping control - Bridges the gaps for different fields of engineering, including mechanical engineering, aeronautical engineering, electrical engineering, communications engineering, robotics and biomedical instrumentation




Advanced Topics on Cellular Self-organizing Nets and Chaotic Nonlinear Dynamics to Model and Control Complex Systems


Book Description

This book focuses on the research topics investigated during the three-year research project funded by the Italian Ministero dell'Istruzione, dell'Universit e della Ricerca (MIUR: Ministry of Education, University and Research) under the FIRB project RBNE01CW3M. With the aim of introducing newer perspectives of the research on complexity, the final results of the project are presented after a general introduction to the subject. The book is intended to provide researchers, PhD students, and people involved in research projects in companies with the basic fundamentals of complex systems and the advanced project results recently obtained.




Dynamical Systems in Neuroscience


Book Description

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.




Nonlinear Dynamics


Book Description

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.




Synchronization in Complex Networks of Nonlinear Dynamical Systems


Book Description

This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ideas from systems theory, linear algebra and graph theory and the synergy between them that are necessary to derive synchronization conditions. Many of the results, which have been obtained fairly recently and have until now not appeared in textbook form, are presented with complete proofs. This text is suitable for graduate-level study or for researchers who would like to be better acquainted with the latest research in this area. Sample Chapter(s). Chapter 1: Introduction (76 KB). Contents: Graphs, Networks, Laplacian Matrices and Algebraic Connectivity; Graph Models; Synchronization in Networks of Nonlinear Continuous-Time Dynamical Systems; Synchronization in Networks of Coupled Discrete-Time Systems; Synchronization in Network of Systems with Linear Dynamics; Agreement and Consensus Problems in Groups of Interacting Agents. Readership: Graduate students and researchers in physics, applied mathematics and engineering.




Introduction to Applied Nonlinear Dynamical Systems and Chaos


Book Description

This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik