Engineering Design Optimization


Book Description

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.




Computational Aerodynamics


Book Description

Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.




Optimization and Computational Fluid Dynamics


Book Description

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.




Aircraft Aerodynamic Design with Computational Software


Book Description

This modern text presents aerodynamic design of aircraft with realistic applications, using CFD software and guidance on its use. Tutorials, exercises, and mini-projects provided involve design of real aircraft, ranging from straight to swept to slender wings, from low speed to supersonic. Supported by online resources and supplements, this toolkit covers topics such as shape optimization to minimize drag and collaborative designing. Prepares seniors and first-year graduate students for design and analysis tasks in aerospace companies. In addition, it is a valuable resource for practicing engineers, aircraft designers, and entrepreneurial consultants.




New Results in Numerical and Experimental Fluid Mechanics XII


Book Description

This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book’s primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This book presents improved and extended versions of selected papers from EUROGEN 2019, a conference with interest on developing or applying evolutionary and deterministic methods in optimization of design and emphasizing on industrial and societal applications.




AIAA Journal


Book Description




Active Subspaces


Book Description

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.