Optimization and Computational Fluid Dynamics


Book Description

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.




The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations


Book Description

This report describes the formulation of an aerodynamic shape design methodology using a compressible viscous flow model based on the Reynolds Averaged Navier Stokes equations. The aerodynamic shape is described by a set of geometrical design variables. The design problem is formulated as an optimization problem stated in terms of an aerodynamic objective functional which has to be minimized. The design scheme employs a gradient based optimization algorithm in order to obtain the optimum values of the design variables. The gradient of the aerodynamic functional with respect to the design variables is computed by means of the variational method, which requires the solution of an adjoint problem. The formulation of the adjoint problem is described which leads to a set of adjoint equations and boundary conditions. Using the flow variables and the adjoint variables, an expression for the gradient has been constructed. Computational results are presented for an inverse problem of an airfoil. It will be shown that, starting from an initial geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best fit of the RAE 2822 airfoil in a transonic flow condition has been reconstructed successfully.




Computational Fluid Dynamics 2006


Book Description

The International Conference on Computational Fluid Dynamics (ICCFD) is the merger of the International Conference on Numerical Methods in Fluid Dynamics, ICNMFD (since 1969) and International Symposium on Computational Fluid Dynamics, ISCFD (since 1985). It is held every two years and brings together physicists, mathematicians and engineers to review and share recent advances in mathematical and computational techniques for modeling fluid dynamics. The proceedings of the 2006 conference (ICCFD4) held in Gent, Belgium, contain a selection of refereed contributions and are meant to serve as a source of reference for all those interested in the state of the art in computational fluid mechanics.




Computational Fluid Dynamics Review 1998 (In 2 Volumes)


Book Description

The first volume of CFD Review was published in 1995. The purpose of this new publication is to present comprehensive surveys and review articles which provide up-to-date information about recent progress in computational fluid dynamics, on a regular basis. Because of the multidisciplinary nature of CFD, it is difficult to cope with all the important developments in related areas. There are at least ten regular international conferences dealing with different aspects of CFD.It is a real challenge to keep up with all these activities and to be aware of essential and fundamental contributions in these areas. It is hoped that CFD Review will help in this regard by covering the state-of-the-art in this field.The present book contains sixty-two articles written by authors from the US, Europe, Japan and China, covering the main aspects of CFD. There are five sections: general topics, numerical methods, flow physics, interdisciplinary applications, parallel computation and flow visualization. The section on numerical methods includes grids, schemes and solvers, while that on flow physics includes incompressible and compressible flows, hypersonics and gas kinetics as well as transition and turbulence. This book should be useful to all researchers in this fast-developing field.




Computational Fluid Dynamics 2002


Book Description

We are pleased to present the Proceedings of the Second International Conference on Computational Fluid Dynamics held at the University of Sydney, Australia, from July 15 to 19, 2002. The conference was a productive meeting of scientists, mathematicians and engineers involved in the computation of fluid flow. Keynote lectures were presented in the areas of optimisation, algorithms, turbulence and bio-fluid mechanics. Two hundred and fifty abstracts from many countries were received for con sideration. The executive committee, consisting of A. Lerat, M. Napolitano, J.J. Chattot, N. Satofuka and myself, were responsible for the selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. One hundred and seventy papers were selected of which one hundred and fifty two were presented at the conference. All papers that appear in the proceedings have been peer reviewed by a panel of experts (with a minimum of two for every paper) before publication. The conference was attended by 160 delegates with a minimum of late with drawals. The informal and friendly atmosphere provided by the university sur roundings was highly appreciated, and the technical aspects of the conference were stimulating. It is appropriate here to thank Alain Lerat, the retiring secretary of the international scientific committee of the conference. We also wish to welcome J. J. Chattot who is the incoming secretary.










Computational Fluid and Solid Mechanics


Book Description

The MIT mission - "to bring together Industry and Academia and to nurture the next generation in computational mechanics is of great importance to reach the new level of mathematical modeling and numerical solution and to provide an exciting research environment for the next generation in computational mechanics." Mathematical modeling and numerical solution is today firmly established in science and engineering. Research conducted in almost all branches of scientific investigations and the design of systems in practically all disciplines of engineering can not be pursued effectively without, frequently, intensive analysis based on numerical computations.The world we live in has been classified by the human mind, for descriptive and analysis purposes, to consist of fluids and solids, continua and molecules; and the analyses of fluids and solids at the continuum and molecular scales have traditionally been pursued separately. Fundamentally, however, there are only molecules and particles for any material that interact on the microscopic and macroscopic scales. Therefore, to unify the analysis of physical systems and to reach a deeper understanding of the behavior of nature in scientific investigations, and of the behavior of designs in engineering endeavors, a new level of analysis is necessary. This new level of mathematical modeling and numerical solution does not merely involve the analysis of a single medium but must encompass the solution of multi-physics problems involving fluids, solids, and their interactions, involving multi-scale phenomena from the molecular to the macroscopic scales, and must include uncertainties in the given data and the solution results. Nature does not distinguish between fluids and solids and does not ever repeat itself exactly.This new level of analysis must also include, in engineering, the effective optimization of systems, and the modeling and analysis of complete life spans of engineering products, from design to fabrication, to possibly multiple repairs, to end of service.




Engineering Design Optimization


Book Description

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.




AIAA Journal


Book Description