Author : Research Institute for Advanced Computer Science (U.S.)
Publisher :
Page : 24 pages
File Size : 48,56 MB
Release : 1996
Category : Aerodynamics
ISBN :
Book Description
Abstract: "This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods [13, 12, 44, 38]. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method [19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9] was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations [39, 25]. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures [24]. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration."