Aerogels Handbook


Book Description

Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation and household uses are being developed with an estimated annual market growth rate of around 70% until 2015. The Aerogels Handbook summarizes state-of-the-art developments and processing of inorganic, organic, and composite aerogels, including the most important methods of synthesis, characterization as well as their typical applications and their possible market impact. Readers will find an exhaustive overview of all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and most recent advances towards applications and commercial products, some of which are commercially available today. Key Features: •Edited and written by recognized worldwide leaders in the field •Appeals to a broad audience of materials scientists, chemists, and engineers in academic research and industrial R&D •Covers inorganic, organic, and composite aerogels •Describes military, aerospace, building industry, household, environmental, energy, and biomedical applications among others




Springer Handbook of Aerogels


Book Description

This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.




Advances in Aerogel Composites for Environmental Remediation


Book Description

Advances in Aerogel Composites for Environmental Remediation presents both contextual information aboutaerogels and details about their application in environmental remediation. A wide variety of aerogels are discussed, rangingfrom common to advanced and from natural to synthetic. By exploring ongoing research and developments in the environmentalremediation technologies using aerogel and its composites, this book addresses common day-to-day environmental problemsand presents solutions to the use of aerogel materials. The chapters discuss fabrication of various aerogel composites, alongwith their design and applications toward different environmental remediation technologies. Additionally, the properties andadvantages of aerogels are compared and contrasted to those of traditional materials. Given the consistent increase in environmental pollution, there is an urgent need to explore new materials for advances in remediationtechnology. Advances in Aerogel Composites for Environmental Remediation brings researchers and practitionersin the fields of environmental remediation, environmental science, and engineering to the forefront of remediation technologieswith a thorough breakdown of the benefits of and techniques relevant to aerogel composites. - Covers basic properties, unique properties, and fabrication techniques of aerogels, from basic silica aerogels topresent-day conventional aerogels - Discusses most of the major environmental remediation techniques and the advantages of using aerogels for theseremediation techniques in comparison to using traditional methods - Presents future prospects for utilizing aerogels in modern day-to-day life and in the fabrication of tangible new products




Aerogels I


Book Description

This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation. The materials covered include nanocellulose-, porous-, silica-, hybrid silica-, carbon-, graphene- and magnetic aerogels. Ways of modulating the pore structure of aerogels are presented, as well as surface modifications and the application of coatings. Future perspectives focus on functional foods, thickeners, stabilizers, and scaffolding in tissue repair. Keywords: Aerogels, Nanocellulose Aerogels, Non-Silicate Aerogels, Organic Aerogels, Composite Hybrid Aerogels, Carbon-based and Graphene-based Aerogels, Biogels, Hybrid Silica-based Aerogels, Energy Storage, Thermal Storage, Catalysis, Water Splitting, Environmental Remediation, Absorbents, Gas Filters, Packaging Materials, Electrical Devices, Thermal Insulations, Fire Retardants, Pharmaceutical and Biomedical Applications, Functional Foods, Thickeners, Stabilizers, Scaffolding in Tissue Repair.




Aerogels for Energy Saving and Storage


Book Description

Explore the energy storage applications of a wide variety of aerogels made from different materials In Aerogels for Energy Saving and Storage, an expert team of researchers delivers a one-stop resource covering the state-of-the-art in aerogels for energy applications. The book covers their morphology, properties, and processability and serves as a valuable resource for researchers and professionals working in materials science and environmentally friendly energy and power technology. The authors offer a comprehensive review of highly efficient energy applications of aerogels that bridges the gap between engineering, science, and chemistry and advances the field of materials development. They provide a Life Cycle Assessment of aerogels in energy systems, as well as discussions of their impact on the environment. Aerogel synthesis, characterization, fabrication, morphology, properties, energy-related applications, and simulations are all explored, and likely future research directions are provided. Readers will also find: A thorough introduction to aerogels in energy, including state-of-the-art advancements and challenges newly encountered Comprehensive explorations of chitin-based and cellulose-derived aerogels, as well as lignin-, clay-, and carbon nanotube-based aerogels Practical discussions of organic, natural, and inorganic aerogels, with further analyses of the lifecycle of aerogels In-depth examinations of the theory, modeling, and simulation of aerogels Perfect for chemical and environmental engineers, Aerogels for Energy Saving and Storage will also earn a place in the libraries of chemistry and materials science researchers in academia and industry.




Handbook of Sol-Gel Science and Technology


Book Description

This completely updated and expanded second edition stands as a comprehensive knowledgebase on both the fundamentals and applications of this important materials processing method. The diverse, international team of contributing authors of this reference clarify in extensive detail properties and applications of sol-gel science and technology as it pertains to the production of substances, active and non-active, including optical, electronic, chemical, sensor, bio- and structural materials. Essential to a wide range of manufacturing industries, the compilation divides into the three complementary sections: Sol-Gel Processing, devoted to general aspects of processing and recently developed materials such as organic-inorganic hybrids, photonic crystals, ferroelectric coatings, and photocatalysts; Characterization of Sol-Gel Materials and Products, presenting contributions that highlight the notion that useful materials are only produced when characterization is tied to processing, such as determination of structure by NMR, in-situ characterization of the sol-gel reaction process, determination of microstructure of oxide gels, characterization of porous structure of gels by the surface measurements, and characterization of organic-inorganic hybrid; and Applications of Sol-Gel Technology, covering applications such as the sol-gel method used in processing of bulk silica glasses, bulk porous gels prepared by sol-gel method, application of sol-gel method to fabrication of glass and ceramic fibers, reflective and antireflective coating films, application of sol-gel method to formation of photocatalytic coating films, and application of sol-gel method to bioactive coating films. The comprehensive scope and integrated treatment of topics make this reference volume ideal for R&D scientists and engineers across a wide range of disciplines and professional interests.




Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications


Book Description

Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications brings together detailed information on gels, hydrogels, and aerogels derived from natural polymers, covering materials, processing, fabrication techniques, structure-property relationships, and novel applications.The book begins by introducing polymeric gels, hydrogels, and aerogels, the different types and properties, advantages and disadvantages, manufacturing techniques, production and scalability, and the possible applications. This is followed by thorough coverage of processing methods for obtaining natural polymer-based gels and hydrogels, with separate chapters focusing on physical processes, chemical processes, green processes, and processing for aerogels. The final chapters of the book focus on the preparation of natural polymer-based gels, hydrogels, and aerogels for many state-of-the-art applications, including biomedical, absorbent, energy saving, filtration, and sensing areas.Engineering of Natural Polymeric Gels and Aerogels for Multifunctional Applications is an essential resource for all those with an interest in polymeric gels and natural polymers, including researchers and scientists in polymer engineering, polymer chemistry, sustainable materials, biomaterials, materials science and engineering, and chemical engineering. In industry, this book supports scientists, R&D, and engineers looking to utilize novel bio-based materials for advanced applications. - Covers the physical, chemical, and green processing methods for obtaining gels, hydrogels, and aerogels from natural polymers - Explores a range of cutting-edge uses, including in biomedical, absorbent, energy-saving, filtration, and bio-sensing applications - Presents the latest innovations in the field, including the preparation of lightweight, highly open porous polysaccharide and protein aerogels




Biobased Aerogels


Book Description

Biobased Aerogels is the first book to cover aerogel research from a green perspective, using commentary and analysis from leading researchers working in the field.




Hybrid Aerogels


Book Description

Aerogels are ultralight porous materials showing great promise in environmental remediation and energy storage. Aerogels successfully remove pollutants and can improve the properties of batteries, supercapacitors and even flexible electronics. The book covers the fundamentals of hybrid aerogels synthesis and their applications. It includes computational approaches such as Molecular Dynamics, lattice Boltzmann method and Navier-Stokes solver.




The Chemistry and Physics of Aerogels


Book Description

Discover a rigorous treatment of aerogels processing and techniques for characterization with this easy-to-use reference. Presents the basics of aerogel synthesis and gelation to open porous nanostructures, and the processing of wet gels like ambient and supercritical drying leading to aerogels. Describes their essential properties with their measurement techniques and theoretical models used to analyse relations to their nanostructure. Linking the fundamentals and with practical applications, this is a useful toolkit for advanced undergraduates, and graduate students doing research in material and polymer science, physical chemistry, and chemical and environmental engineering.