Approaches for Clean Combustion in Gas Turbines


Book Description

This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.




Turbulence Modelling Approaches


Book Description

Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.




Gas Turbine Engineering Handbook


Book Description

The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. - Comprehensive treatment of Gas Turbines from Design to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers - A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field - The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems













Gas Turbine Performance


Book Description

A significant addition to the literature on gas turbine technology, the second edition of Gas Turbine Performance is a lengthy text covering product advances and technological developments. Including extensive figures, charts, tables and formulae, this book will interest everyone concerned with gas turbine technology, whether they are designers, marketing staff or users.







Gas Turbine Heat Transfer and Cooling Technology, Second Edition


Book Description

A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.