Age-Related Changes in Structure and Biomechanics of Human Sartorius Tendon Collagen


Book Description

Injuries to soft tissues such as tendons affect millions of people annually. Injuries produced by in vitro mechanical overload result in damage to constituent collagen. Using bovine models, it has been found that damage to tendon results in serial kink formation within collagen fibrils in low-load tendons - a mechanism called discrete plasticity. Injuries to soft tissues such as tendons affect millions of people annually. Injuries produced by in vitro mechanical overload result in damage to constituent collagen. Using bovine models, it has been found that overload results in serial kink formation within collagen fibrils in low-load tendons -- a mechanism called discrete plasticity. Despite the prevalence of injury and our aging population, the exact mechanism behind the failure of collagen in aging human tendons has not been investigated until now. In this study, fresh contralateral human sartorius tendons from donors aged 20 to 60 were used to assess potential age-related changes in failure mechanics. Thermal stability of tendon collagen was examined and was expected to increase with age due to increased crosslinking. Damage motifs were investigated following tendon rupture using scanning electron microscopy. It was thought that discrete plasticity kinks would form following rupture in younger samples, but that the mechanism would dissipate with age. The thermal stability results suggest that there is a high density of mature crosslinks present. The exact relationship between crosslinking and age remains inconclusive. Despite these structural changes, the mechanical properties did not change with age. Discrete plasticity was not found in any tendon sample, likely due to heavy crosslinking. Individual fibrils displayed sites of local damage with exposed substructure, and kinks/turns that propagated across fibrils. These failure motifs along with the thermal stability test results support the notion that discrete plasticity is a feature of tendons that are sparsely crosslinked. This study was the first to examine how the nanoscaled, structuro-mechanical features of overload failure in human tendons varies with age. As we increase our understanding of the effect of tendon type and age on damage motifs, we will also better understand how injury occurs on the nanoscale and how healing is mediated in the body.




Age-, Sex-, and Diabetes-Determined Changes in the Structure and Mechanics of Human Sartorius Tendon Collagen


Book Description

In an age where men and women are remaining physically active into the geriatric years, age-related changes in soft tissue injuries and healing are becoming more important to clinical care. Differences in structure and function of human tendons with aging, sex, and diabetes are poorly understood, despite reported differences in the frequencies of specific tendon injuries. The objectives of this thesis were to investigate whether variations occur in (i) molecular-level structure, (ii) multi-fascicle level mechanics and (iii) ultrastructural failure mechanisms in the human sartorius tendon that are determined by tissue bank donor age, sex and diabetic status. Human sartorius tendons were collected from the NSHA Regional Tissue Bank (Halifax, N.S) from donors ranging in age from 16-56 (female, non-diabetic only) and 24-60 (male, non-diabetic or diabetic). Blinded donor information included height, weight and diabetic status. To assess molecular-level changes in structure, hydrothermal isometric tension (HIT) analysis and differential scanning calorimetry (DSC) were used. The mechanics of the sartorius tendon multi-fascicle subsamples were assessed using uniaxial tensile overload testing to rupture. After rupture, tendon collagen ultrastructure was examined using SEM and compared with undamaged samples. Histology and immunohistochemistry were performed on fixed tendon samples (from predominantly male diabetic and non-diabetic donors) to identify changes in (i) collagen crimp, (ii) cell nuclei content and (iii) pentosidine epitope concentration with aging and diabetes. Results demonstrated that the sartorius tendon collagen is highly crosslinked, from early adulthood through early geriatric life. Under overload to rupture, this crosslinking results in high energy, sequential elastic rupture of individual tendon fascicles. Ultrastructural studies with SEM revealed fibril-level failure mechanisms consistent with elastic recoil (twisting, balling and knotting), hairpin turns, and local failure and complete breakage of isolated and neighboring fibrils - but with an absence of serial discrete plasticity kinking observed in other species. Fascicle mechanical properties were largely maintained with age. Thermal stability and heterogeneity of collagen decreased modestly with age under HIT and DSC. In the non-diabetic donors, tendon samples from female donors were 25% weaker, 38% less tough and 16% less extensible than those from non-diabetic male donors. In males, diabetic tendon samples were 37% less tough and 20% less extensible than normal tendons, yet modulus and strength remained unchanged. A slight increase in collagen denaturation temperature was observed with diabetes, likely due in part to accumulation of advanced glycation product crosslinks. The combination of aging and diabetes qualitatively increased collagen crimp length, decreased cell nuclei numbers and increased pentosidine epitope concentration. The human sartorius tendon is a highly crosslinked structure that remains relatively unchanged with age, sex and diabetes, sacrificing the toughness mechanism discrete plasticity for molecular stability and elastic mechanical strength. This stability of structure with age is belied by the surprisingly high cellular density which is partially retained into early geriatric life. This study has contributed to advancing modern knowledge of tendon structure-function relations, with potential future applications in treatment of soft tissue injuries and engineering of tendon or ligament replacements.




Biomechanical Basis of Human Movement


Book Description

Focusing on the quantitative nature of biomechanics, this book integrates current literature, meaningful numerical examples, relevant applications, hands-on exercises, and functional anatomy, physics, calculus, and physiology to help students - regardless of their mathematical background - understand the full continuum of human movement potential.




Postgraduate Orthopaedics


Book Description

The must-have book for candidates preparing for the oral component of the FRCS (Tr and Orth).




Kinesiology


Book Description

The Second Edition of Kinesiology: The Mechanics and Pathomechanics of Human Movement relates the most current understanding of anatomy and mechanics with clinical practice concerns. Featuring seven chapters devoted to biomechanics, straightforward writing, and over 900 beautiful illustrations, the text provides you with detailed coverage of the structure, function, and kinesiology of each body region. You will gain an in-depth understanding of the relationship between the quality of movement and overall human health. Special features include: New DVD containing about 150 videos provides dynamic examples of clinical demonstrations, principle illustrations, and lab activities. This powerful resource explores patient function, dysfunction, and injury for greater comprehension. Clinical Relevance Boxes reinforce the relationship of biomechanical principles to patient care through real-life case studies. Muscle Attachment Boxes provide easily accessed anatomical information and tips on muscle palpation Examining the Forces Boxes highlight the advanced mathematical concepts used to determine forces on joint structure. Evidence-based presentations deliver the most current literature and essential classic studies for your understanding of musculoskeletal structure and function. Whether you are a student or practitioner in the field of physical therapy, occupational therapy, or exercise science, this comprehensive book serves as an excellent resource for best practice techniques.




Biomechanics of Soft Tissue in Cardiovascular Systems


Book Description

The book is written by leading experts in the field presenting an up-to-date view of the subject matter in a didactically sound manner. It presents a review of the current knowledge of the behaviour of soft tissues in the cardiovascular system under mechanical loads, and the importance of constitutive laws in understanding the underlying mechanics is highlighted. Cells are also described together with arteries, tendons and ligaments, heart, and other biological tissues of current research interest in biomechanics. This includes experimental, continuum mechanical and computational perspectives, with the emphasis on nonlinear behaviour, and the simulation of mechanical procedures such as balloon angioplasty.




Biomechanics of Skeletal Muscles


Book Description

Richly illustrated and presented in clear, concise language, Biomechanics of Skeletal Muscles is an essential resource for those seeking advanced knowledge of muscle biomechanics. Written by leading experts Vladimir Zatsiorsky and Boris Prilutsky, the text is one of the few to look at muscle biomechanics in its entirety—from muscle fibers to muscle coordination—making it a unique contribution to the field. Using a blend of experimental evidence and mechanical models, Biomechanics of Skeletal Muscles provides an explanation of whole muscle biomechanics at work in the body in motion. The book first addresses the mechanical behavior of single muscles—from the sarcomere level up to the entire muscle. The architecture of human muscle, the mechanical properties of tendons and passive muscles, the biomechanics of active muscles, and the force transmission and shock absorption aspects of muscle are explored in detail. Next, the various issues of muscle functioning during human motion are addressed. The transformation from muscle force to joint movements, two-joint muscle function, eccentric muscle action, and muscle coordination are analyzed. This advanced text assumes some knowledge of algebra and calculus; however, the emphasis is on understanding physical concepts. Higher-level computational descriptions are placed in special sections in the later chapters of the book, allowing those with a strong mathematical background to explore this material in more detail. Readers who choose to skip over these sections will find that the book still provides a strong conceptual understanding of advanced topics. Biomechanics of Skeletal Muscles also contains numerous special features that facilitate readers’ comprehension of the topics presented. More than 300 illustrations and accompanying explanations provide an extensive visual representation of muscle biomechanics. Refresher sidebars offer brief reminders of mathematical and biomechanical concepts, and From the Literature sidebars present practical examples that illustrate the concepts under discussion. Chapter summaries and review questions provide an opportunity for reflection and self-testing, and reference lists at the end of each chapter provide a starting point for further study. Biomechanics of Skeletal Muscles offers a thorough explanation of whole muscle biomechanics, bridging the gap between foundational biomechanics texts and scientific literature. With the information found in this text, readers can prepare themselves to better understand the latest in cutting-edge research. Biomechanics of Skeletal Muscles is the third volume in the Biomechanics of Human Motion series. Advanced readers in human movement science gain a comprehensive understanding of the biomechanics of human motion as presented by one of the world’s foremost researchers on the subject, Dr. Vladimir Zatsiorsky. The series begins with Kinematics of Human Motion, which details human body positioning and movement in three dimensions; continues with Kinetics of Human Motion, which examines the forces that create body motion and their effects; and concludes with Biomechanics of Skeletal Muscles, which explains the action of the biological motors that exert force and produce mechanical work during human movement.




Biomechanics


Book Description

The motivation for writing aseries ofbooks on biomechanics is to bring this rapidly developing subject to students of bioengineering, physiology, and mechanics. In the last decade biomechanics has become a recognized disci pline offered in virtually all universities. Yet there is no adequate textbook for instruction; neither is there a treatise with sufficiently broad coverage. A few books bearing the title of biomechanics are too elementary, others are too specialized. I have long feIt a need for a set of books that will inform students of the physiological and medical applications of biomechanics, and at the same time develop their training in mechanics. We cannot assume that all students come to biomechanics already fully trained in fluid and solid mechanics; their knowledge in these subjects has to be developed as the course proceeds. The scheme adopted in the present series is as follows. First, some basic training in mechanics, to a level about equivalent to the first seven chapters of the author's A First Course in Continuum Mechanics (Prentice-Hall,lnc. 1977), is assumed. We then present some essential parts of biomechanics from the point of view of bioengineering, physiology, and medical applications. In the meantime, mechanics is developed through a sequence of problems and examples. The main text reads like physiology, while the exercises are planned like a mechanics textbook. The instructor may fil1 a dual role: teaching an essential branch of life science, and gradually developing the student's knowledge in mechanics.




Introduction to Sports Biomechanics


Book Description

First published in 1996. Routledge is an imprint of Taylor & Francis, an informa company.




Fundamentals of Biomechanics


Book Description

Fundamentals of Biomechanics introduces the exciting world of how human movement is created and how it can be improved. Teachers, coaches and physical therapists all use biomechanics to help people improve movement and decrease the risk of injury. The book presents a comprehensive review of the major concepts of biomechanics and summarizes them in nine principles of biomechanics. Fundamentals of Biomechanics concludes by showing how these principles can be used by movement professionals to improve human movement. Specific case studies are presented in physical education, coaching, strength and conditioning, and sports medicine.