Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Adversarial Machine Learning


Book Description

This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.




Artificial Intelligence in Health


Book Description

This book constitutes the refereed post-conference proceedings of the First International Workshop on Artificial Intelligence in Health, AIH 2018, in Stockholm, Sweden, in July 2018. This workshop consolidated the workshops CARE, KRH4C and AI4HC into a single event. The 18 revised full papers included in this volume were carefully selected from the 26 papers accepted for presentation out of 42 initial submissions. The papers present AI technologies with medical applications and are organized in three tracks: agents in healthcare; data science and decision systems in medicine; and knowledge management in healthcare.




Artificial Intelligence in Insurance and Finance


Book Description

Luisa Fernanda Polania Cabrera is an Experienced Professional at Target Corporation (United States). Victor Wu is a Product Manager at GitLab Inc, San Francisco, United States. Sou-Cheng Choi is a Consulting Principle Data Scientist at Allstate Corporation. Lawrence Kwan Ho Ma is the Founder, Director and Chief Scientist of Valigo Limited and Founder, CEO and Chief Scientist of EMALI.IO Limited. Glenn M. Fung is the Chief Research Scientist at American Family Insurance.




Advances in Intelligent Manufacturing and Service System Informatics


Book Description

This book comprises the proceedings of the 12th International Symposium on Intelligent Manufacturing and Service Systems 2023. The contents of this volume focus on recent technological advances in the field of artificial intelligence in manufacturing & service systems including machine learning, autonomous control, bioinformatics, human-artificial intelligence interaction, digital twin, robotic systems, sybersecurity, etc. This volume will prove a valuable resource for those in academia and industry.




The Economics of Artificial Intelligence


Book Description

A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.




Artificial Intelligence in Finance


Book Description

This book provides a comprehensive analysis of the primary challenges, opportunities and regulatory developments associated with the use of artificial intelligence (AI) in the financial sector. It will show that, while AI has the potential to promote a more inclusive and competitive financial system, the increasing use of AI may bring certain risks and regulatory challenges that need to be addressed by regulators and policymakers.




Handbook of Artificial Intelligence in Biomedical Engineering


Book Description

Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.




Hacking Artificial Intelligence


Book Description

Sheds light on the ability to hack AI and the technology industry’s lack of effort to secure vulnerabilities. We are accelerating towards the automated future. But this new future brings new risks. It is no surprise that after years of development and recent breakthroughs, artificial intelligence is rapidly transforming businesses, consumer electronics, and the national security landscape. But like all digital technologies, AI can fail and be left vulnerable to hacking. The ability to hack AI and the technology industry’s lack of effort to secure it is thought by experts to be the biggest unaddressed technology issue of our time. Hacking Artificial Intelligence sheds light on these hacking risks, explaining them to those who can make a difference. Today, very few people—including those in influential business and government positions—are aware of the new risks that accompany automated systems. While society hurdles ahead with AI, we are also rushing towards a security and safety nightmare. This book is the first-ever layman’s guide to the new world of hacking AI and introduces the field to thousands of readers who should be aware of these risks. From a security perspective, AI is today where the internet was 30 years ago. It is wide open and can be exploited. Readers from leaders to AI enthusiasts and practitioners alike are shown how AI hacking is a real risk to organizations and are provided with a framework to assess such risks, before problems arise.




Algorithms in Advanced Artificial Intelligence


Book Description

The most common form of severe dementia, Alzheimer’s disease (AD), is a cumulative neurological disorder because of the degradation and death of nerve cells in the brain tissue, intelligence steadily declines and most of its activities are compromised in AD. Before diving into the level of AD diagnosis, it is essential to highlight the fundamental differences between conventional machine learning (ML) and deep learning (DL). This work covers a number of photo-preprocessing approaches that aid in learning because image processing is essential for the diagnosis of AD. The most crucial kind of neural network for computer vision used in medical image processing is called a Convolutional Neural Network (CNN). The proposed study will consider facial characteristics, including expressions and eye movements using the diffusion model, as part of CNN’s meticulous approach to Alzheimer’s diagnosis. Convolutional neural networks were used in an effort to sense Alzheimer’s disease in its early stages using a big collection of pictures of facial expressions.