Deep Space Telecommunications Systems Engineering


Book Description

The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.




The Power for Flight


Book Description

The NACA and aircraft propulsion, 1915-1958 -- NASA gets to work, 1958-1975 -- The shift toward commercial aviation, 1966-1975 -- The quest for propulsive efficiency, 1976-1989 -- Propulsion control enters the computer era, 1976-1998 -- Transiting to a new century, 1990-2008 -- Toward the future







Differential Quadrature and Its Application in Engineering


Book Description

In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.




CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999


Book Description

These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimazation, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.




Fundamentals of Aircraft and Rocket Propulsion


Book Description

This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.




New Approaches and Concepts in Turbulence


Book Description

This book contains the proceedings of a colloquium held in Monte Verità from September 9-13, 1991. Special care has been taken to devote adequate space to the scientific discussions, which claimed about half of the time available. Scientists from all over the world presented their views on the importance of kinematic properties, topology and fractal geometry, and on the dynamic behaviour of turbulent flows. They debated the importance of coherent structures and the possibility to incorporate these in the statistical theory of turbulence, as well as their significance for the reduction of the degrees of freedom and the prospective of dynamical systems and chaos approaches to the problem of turbulence. Also under discussion was the relevance of these new approaches to the study of the instability and the origin of turbulence, and the importance of numerical and physical experiments in improving the understanding of turbulence.







28th International Symposium on Shock Waves


Book Description

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.