The Optimal Design of Chemical Reactors


Book Description

Mathematics in Science and Engineering, Volume 3: The Optimal Design of Chemical Reactors: A Study in Dynamic Programming covers some of the significant problems of chemical reactor engineering from a unified point of view. This book discusses the principle of optimality in its general baring on chemical processes. Organized into nine chapters, this volume begins with an overview of the whole range of optimal problems in chemical reactor design. This text then provides the fundamental equations for reactions and reactors. Other chapters consider the objective function needed to define a realistic optimal problem and explain separately the main types of chemical reactors and their associated problems. This book discusses as well the three problems with a stochastic element. The final chapter deals with the optimal operation of existing reactors that may be regarded as partial designs in which only some of the variables can be optimally chosen. This book is a valuable resource for chemical engineers.




Success and Creativity in Scientific Research


Book Description

Long-term success in scientific research requires skills that go well beyond technical prowess. Success and Creativity in Scientific Research: Amaze Your Friends and Surprise Yourself is based on a popular series of lectures the author has given to PhD students, postdoctoral researchers, and faculty at the Georgia Institute of Technology. Both entertaining and thought-provoking, this essential work supports advanced students and early career professionals across a variety of technical disciplines to thrive as successful and innovative researchers. Features: Discusses habits needed to find deep satisfaction in research, systematic and proven methods for generating good ideas, strategies for effective technical writing, and making compelling presentations Uses a conversational tone, making extensive use of anecdotes from scientific luminaries to engage readers Provides actionable methods to help readers achieve long-term career success Offers memorable examples to illustrate general principles Features topics relevant to researchers in all disciplines of science and engineering This book is aimed at students and early career professionals who want to achieve the satisfaction of performing creative and impactful research in any area of science or engineering.




Chemical and Engineering Thermodynamics


Book Description

A revised edition of the well-received thermodynamics text, this work retains the thorough coverage and excellent organization that made the first edition so popular. Now incorporates industrially relevant microcomputer programs, with which readers can perform sophisticated thermodynamic calculations, including calculations of the type they will encounter in the lab and in industry. Also provides a unified treatment of phase equilibria. Emphasis is on analysis and prediction of liquid-liquid and vapor-liquid equilibria, solubility of gases and solids in liquids, solubility of liquids and solids in gases and supercritical fluids, freezing point depressions and osmotic equilibria, as well as traditional vapor-liquid and chemical reaction equilibria. Contains many new illustrations and exercises.




Guidelines for Risk Based Process Safety


Book Description

Guidelines for Risk Based Process Safety provides guidelines for industries that manufacture, consume, or handle chemicals, by focusing on new ways to design, correct, or improve process safety management practices. This new framework for thinking about process safety builds upon the original process safety management ideas published in the early 1990s, integrates industry lessons learned over the intervening years, utilizes applicable "total quality" principles (i.e., plan, do, check, act), and organizes it in a way that will be useful to all organizations - even those with relatively lower hazard activities - throughout the life-cycle of a company.







Regenerative Engineering


Book Description

This book focuses on advances made in both materials science and scaffold development techniques, paying close attention to the latest and state-of-the-art research. Chapters delve into a sweeping variety of specific materials categories, from composite materials to bioactive ceramics, exploring how these materials are specifically designed for regenerative engineering applications. Also included are unique chapters on biologically-derived scaffolding, along with 3D printing technology for regenerative engineering. Features: Covers the latest developments in advanced materials for regenerative engineering and medicine. Each chapter is written by world class researchers in various aspects of this medical technology. Provides unique coverage of biologically derived scaffolding. Includes separate chapter on how 3D printing technology is related to regenerative engineering. Includes extensive references at the end of each chapter to enhance further study.




Process Intensification


Book Description

Process Intensification is a comprehensive textbook and treats the theory of process intensification design, and all innovation steps from idea generation to commercial implementation, and all focused on contributing to the UN Sustainable Development Goals. This book covers the ‘hard’ elements of design, modelling, and experimental validations and the ‘soft’ elements, values of engineers, interests of stakeholders and beliefs of society.







Microhydrodynamics


Book Description

Microhydrodynamics: Principles and Selected Applications presents analytical and numerical methods for describing motion of small particles suspended in viscous fluids. The text first covers the fundamental principles of low-Reynolds-number flow, including the governing equations and fundamental theorems; the dynamics of a single particle in a flow field; and hydrodynamic interactions between suspended particles. Next, the book deals with the advances in the mathematical and computational aspects of viscous particulate flows that point to innovations for large-scale simulations on parallel computers. The book will be of great use to students in engineering and applied mathematics. Students and practitioners of chemistry will also benefit from this book.