Theory and Design of Air Cushion Craft


Book Description

This definitive text describes the theory and design both of Air Cushion Vehicles (ACV) and Surface Effect Ships (SES). It begins by introducing hovercraft types and their development and application throughout the world in the last three decades, before going on to discuss the theoretical aspects of ACV and SES craft covering their hovering performance, dynamic trim over calm water, resistance, stability, manoeuvrability, skirt configuration and analysis of forces acting on the skirts, ACV and SES seakeeping, and the methodology of scaling aerodynamic and hydrodynamic forces acting on the ACV/SES from model test data. The latter chapters describe a design methodology, including design criteria and standard methods for estimating craft performance, lift system design, skirt design, hull structure, propulsion systems and power unit selection. Much technical information, data, and references to further work on hovercraft and SES design is provided. The book will be a useful reference to engineers, technicians, teachers, students (both undergraduate and postgraduate), operators etc. who are involved in ACV/SES research, design, construction and operation. - Guides the reader on how to perform machinery and systems selection within ACV and SES overall design - For teachers, students (both at under- and post-graduate level), engineers and technicians involved in ACV/SES




High-Speed Marine Craft


Book Description

This book details the efforts to build a large naval vessel capable of traveling at one hundred knots. It is the first book to summarize this extensive work from historical and technical perspectives. It explores the unique principles and challenges in the design of high-speed marine craft. This volume explores different hull form concepts, requiring an understanding of the four forces affecting the lift and the drag of the craft. The four forces covered are hydrostatic (buoyancy), hydro-dynamic, aerostatic, and aerodynamic. This text will appeal to naval researchers, architects, graduate students and historians, as well as others generally interested in naval architecture and propulsion.




Theory and Design of Air Cushion Craft


Book Description

This definitive text describes the theory and design both of Air Cushion Vehicles (ACV) and Surface Effect Ships (SES). It begins by introducing hovercraft types and their development and application throughout the world in the last three decades, before going on to discuss the theoretical aspects of ACV and SES craft covering their hovering performance, dynamic trim over calm water, resistance, stability, manoeuvrability, skirt configuration and analysis of forces acting on the skirts, ACV and SES seakeeping, and the methodology of scaling aerodynamic and hydrodynamic forces acting on the ACV/SES from model test data. The latter chapters describe a design methodology, including design criteria and standard methods for estimating craft performance, lift system design, skirt design, hull structure, propulsion systems and power unit selection. Much technical information, data, and references to further work on hovercraft and SES design is provided. The book will be a useful reference to engineers, technicians, teachers, students (both undergraduate and postgraduate), operators etc. who are involved in ACV/SES research, design, construction and operation. Guides the reader on how to perform machinery and systems selection within ACV and SES overall design For teachers, students (both at under- and post-graduate level), engineers and technicians involved in ACV/SES




High-Speed Marine Craft


Book Description

This book details the effort to build a large ship capable of traveling at 100 knots, from historical and technical perspectives.




WIG Craft and Ekranoplan


Book Description

In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.




DTNSRDC.


Book Description




Hovercraft Technology, Economics and Applications


Book Description

The amphibious versatility, marine speed and low footprint pressure have given the hovercraft a role in specialized applications. Among them are search and rescue, emergency medical services, military and arctic operations, icebreaking, patrol, law enforcement, ferries, and recreational activities such as racing. To meet these demands, the hovercraft has undergone considerable development since its inception. A comprehensive and timely review of the analysis, design, operation, economics and applications of hovercraft is presented in this volume by a team of highly qualified experts. The topics covered range from first principles to the state-of-the-art, with extensive references to current literature. The overall presentation is intended not to exceed the final year level of undergraduate engineering. The introduction and summary sections of all chapters are intended to give a qualitative grasp of the material covered without having to read all the technical portions.In varying degrees, the volume will appeal to managers, decision-support staff, operators, technologists, undergraduate students, and anyone entering the hovercraft field or seeking an introduction to it. It will also be of interest to design engineers, researchers and graduate students. Thus, this volume can serve as an up-to-date reference on several important aspects of hovercraft for a wide range of readers.




High Performance Marine Vessels


Book Description

High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs.




Hearings


Book Description