Air Quality Monitoring and Advanced Bayesian Modeling


Book Description

Air Quality Monitoring and Advanced Bayesian Modeling introduces recent developments in urban air quality monitoring and forecasting. The book presents concepts, theories, and case studies related to monitoring methods of criteria air pollutants, advanced methods for real-time characterization of chemical composition of PM and VOCs, and emerging strategies for air quality monitoring. The book illustrates concepts and theories through case studies about the development of common statistical air quality forecasting models. Readers will also learn advanced topics such as the Bayesian model class selection, adaptive forecasting model development with Kalman filter, and the Bayesian model averaging of multiple adaptive forecasting models. - Covers fundamental to advanced applications of urban air quality monitoring and forecasting - Includes detailed descriptions and applications of the instruments necessary for the most successful monitoring techniques - Presents case studies throughout to provide real-world context to the research presented in the book




Urban Remote Sensing


Book Description

Urban Remote Sensing The second edition of Urban Remote Sensing is a state-of-the-art review of the latest progress in the subject. The text examines how evolving innovations in remote sensing allow to deliver the critical information on cities in a timely and cost-effective way to support various urban management activities and the scientific research on urban morphology, socio-environmental dynamics, and sustainability. Chapters are written by leading scholars from a variety of disciplines including remote sensing, GIS, geography, urban planning, environmental science, and sustainability science, with case studies predominately drawn from North America and Europe. A review of the essential and emerging research areas in urban remote sensing including sensors, techniques, and applications, especially some critical issues that are shifting the ­directions in urban remote sensing research. Illustrated in full color throughout, including numerous relevant case studies and extensive discussions of important concepts and cutting-edge technologies to enable clearer understanding for non-technical audiences. Urban Remote Sensing, Second Edition will be of particular interest to upper-division undergraduate and graduate students, researchers and professionals working in the fields of remote sensing, geospatial information, and urban & environmental planning.




Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods


Book Description

Understanding the advancement of sustainable development is critical to managing human activities to avoid the overexploitation of resources and pollution of the environment beyond tolerable levels. Sustainable development involves not only preservation and care of the environment, but also recognition of the complex relations between economic, social and living systems. Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods presents processing methods and their applications, which are practical for decision making and task management at the regional level as well as for scientific studies in sustainable development assessment. This book serves as a reference guide for post-graduate students in the field of management as well as a critical guide for managers, government officials, and information professionals.




Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing


Book Description

Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing Detailed resource on the “Why,” “What,” and “How” of integrated process modeling, advanced control and data analytics explained via hands-on examples and workshops for optimizing polyolefin manufacturing. Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing discusses, as well as demonstrates, the optimization of polyolefin production by covering topics from polymer process modeling and advanced process control to data analytics and machine learning, and sustainable design and industrial practice. The text also covers practical problems, handling of real data streams, developing the right level of detail, and tuning models to the available data, among other topics, to allow for easy translation of concepts into practice. Written by two highly qualified authors, Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing includes information on: Segment-based modeling of polymer processes; selection of thermodynamic methods; estimation of physical properties for polymer process modeling Reactor modeling, convergence tips and data-fit tool; free radical polymerization (LDPE, EVA and PS), Ziegler-Natta polymerization (HDPE, PP, LLPDE, and EPDM) and ionic polymerization (SBS rubber) Improved polymer process operability and control through steady-state and dynamic simulation models Model-predictive control of polyolefin processes and applications of multivariate statistics and machine learning to optimizing polyolefin manufacturing Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing enables readers to make full use of advanced computer models and latest data analytics and machine learning tools for optimizing polyolefin manufacturing, making it an essential resource for undergraduate and graduate students, researchers, and new and experienced engineers involved in the polyolefin industry.




Bayesian Methods for Structural Dynamics and Civil Engineering


Book Description

Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen




Advanced Information Networking and Applications


Book Description

Networks of today are going through a rapid evolution and there are many emerging areas of information networking and their applications. Heterogeneous networking supported by recent technological advances in low power wireless communications along with silicon integration of various functionalities such as sensing, communications, intelligence and actuations are emerging as a critically important disruptive computer class based on a new platform, networking structure and interface that enable novel, low cost and high volume applications. Several of such applications have been difficult to realize because of many interconnections problems. To fulfill their large range of applications different kinds of networks need to collaborate and wired and next generation wireless systems should be integrated in order to develop high performance computing solutions to problems arising from the complexities of these networks. This volume covers the theory, design and applications of computer networks, distributed computing and information systems. The aim of the volume “Advanced Information Networking and Applications” is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and applications.




Bayesian Data Analysis, Third Edition


Book Description

Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.




Exposure Assessment in Environmental Epidemiology


Book Description

This completely updated edition of Exposure Assessment in Environmental Epidemiology offers a practical introduction to exposure assessment methodologies in environmental epidemiologic studies. In addition to methods for traditional methods -- questionnaires, biomonitoring -- this new edition is expanded to include geographic information systems, modeling, personal sensoring, remote sensing, and OMICs technologies. In addition, each of these methods is contextualized within a recent epidemiology study, maximizing illustration for students and those new to these to these techniques. With clear writing and extensive illustration, this book will be useful to anyone interested in exposure assessment, regardless of background.




Machine Learning and Its Applications


Book Description

In recent years machine learning has made its way from artificial intelligence into areas of administration, commerce, and industry. Data mining is perhaps the most widely known demonstration of this migration, complemented by less publicized applications of machine learning like adaptive systems in industry, financial prediction, medical diagnosis and the construction of user profiles for Web browsers. This book presents the capabilities of machine learning methods and ideas on how these methods could be used to solve real-world problems. The first ten chapters assess the current state of the art of machine learning, from symbolic concept learning and conceptual clustering to case-based reasoning, neural networks, and genetic algorithms. The second part introduces the reader to innovative applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, user modeling, data analysis, discovery science, agent technology, finance, etc.




A Companion to Health and Medical Geography


Book Description

This Companion provides a comprehensive account of health and medical geography and approaches the major themes and key topics from a variety of angles. Offers a unique breadth of topics relating to both health and medical geography Includes contributions from a range of scholars from rising stars to established, internationally renowned authors Provides an up-to-date review of the state of the sub-discipline Thematically organized sections offer detailed accounts of specific issues and combine general overviews of the current literature with case study material Chapters cover topics at the cutting edge of the sub-discipline, including emerging and re-emerging diseases, the politics of disease, mental and emotional health, landscapes of despair, and the geography of care