Aircraft Fuel Systems


Book Description

All aspects of fuel products and systems including fuel handling, quantity gauging and management functions for both commercial (civil) and military applications. The fuel systems on board modern aircraft are multi-functional, fully integrated complex networks. They are designed to provide a proper and reliable management of fuel resources throughout all phases of operation, notwithstanding changes in altitude or speed, as well as to monitor system functionality and advise the flight crew of any operational anomalies that may develop. Collates together a wealth of information on fuel system design that is currently disseminated throughout the literature. Authored by leading industry experts from Airbus and Parker Aerospace. Includes chapters on basic system functions, features and functions unique to military aircraft, fuel handling, fuel quantity gauging and management, fuel systems safety and fuel systems design and development. Accompanied by a companion website housing a MATLAB/SIMULINK model of a modern aircraft fuel system that allows the user to set up flight conditions, investigate the effects of equipment failures and virtually fly preset missions. Aircraft Fuel Systems provides a timely and invaluable resource for engineers, project and programme managers in the equipment supply and application communities, as well as for graduate and postgraduate students of mechanical and aerospace engineering. It constitutes an invaluable addition to the established Wiley Aerospace Series.




Aircraft Fuel Systems


Book Description

With "Aircraft Fuel Systems," the editors have provided a unique offering that integrates all aspects of fuel products and systems including fuel handling, quantity gauging, and management functions for both commercial (civil) and military applications.




Aviation Fuels with Improved Fire Safety


Book Description

The reduction of the fire hazard of fuel is critical to improving survivability in impact-survivable aircraft accidents. Despite current fire prevention and mitigation approaches, fuel flammability can overwhelm post-crash fire scenarios. The Workshop on Aviation Fuels with Improved Fire Safety was held November 19-20, 1996 to review the current state of development, technological needs, and promising technology for the future development of aviation fuels that are most resistant to ignition during a crash. This book contains a summary of workshop discussions and 11 presented papers in the areas of fuel and additive technologies, aircraft fuel system requirements, and the characterization of fuel fires.




Aircraft Fuel Metering Systems


Book Description

A textbook with full descriptions of basic fuel metering, carburetor operation, service and maintenance. Includes TCM and Bendix fuel injection systems.




Fuel Effects on Operability of Aircraft Gas Turbine Combustors


Book Description

In summarizing the results obtained in the first five years of the National Jet Fuel Combustion Program (NJFCP), this book demonstrates that there is still much to be learned about the combustion of alternative jet fuels.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Toxicologic Assessment of Jet-Propulsion Fuel 8


Book Description

This report provides a critical review of toxicologic, epidemiologic, and other relevant data on jet-propulsion fuel 8, a type of fuel in wide use by the U.S. Department of Defense (DOD), and an evaluation of the scientific basis of DOD's interim permissible exposure level of 350 mg/m3




Aircraft Systems


Book Description

This third edition of Aircraft Systems represents a timely update of the Aerospace Series’ successful and widely acclaimed flagship title. Moir and Seabridge present an in-depth study of the general systems of an aircraft – electronics, hydraulics, pneumatics, emergency systems and flight control to name but a few - that transform an aircraft shell into a living, functioning and communicating flying machine. Advances in systems technology continue to alloy systems and avionics, with aircraft support and flight systems increasingly controlled and monitored by electronics; the authors handle the complexities of these overlaps and interactions in a straightforward and accessible manner that also enhances synergy with the book’s two sister volumes, Civil Avionics Systems and Military Avionics Systems. Aircraft Systems, 3rd Edition is thoroughly revised and expanded from the last edition in 2001, reflecting the significant technological and procedural changes that have occurred in the interim – new aircraft types, increased electronic implementation, developing markets, increased environmental pressures and the emergence of UAVs. Every chapter is updated, and the latest technologies depicted. It offers an essential reference tool for aerospace industry researchers and practitioners such as aircraft designers, fuel specialists, engine specialists, and ground crew maintenance providers, as well as a textbook for senior undergraduate and postgraduate students in systems engineering, aerospace and engineering avionics.




Aviation Fuels


Book Description

Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels. Presents an overview on all relevant fields of aviation fuels, including production, approval, fuel systems compatibility and combustion (including emissions) Discusses the environmental impacts and carbon footprint of alternative fuels Features a chapter on electric flight and hydrogen powered aircraft and how its implementation will impact the aviation industry




Commercial Aviation in the Jet Era and the Systems that Make it Possible


Book Description

This book discusses the multiple systems that make commercial jet travel safe and convenient. The author starts by tracing the evolution of commercial jets from the Boeing 707 to the double decker Airbus A380. The next 7 chapters discuss flight controls, along with the high lift surfaces (flaps and slats) that are essential to allow high speed, low drag aircraft to take-off and land. The other systems include Engines/Nacelles, Cabin Pressurization and Air Conditioning systems, Landing Gear and brakes, Fuel Systems, Instruments/Sensors, and finally Deicing systems for the wings, nacelles and external air speed sensors. Case studies describe a significant accident that arose from a failure in the various systems described. The final chapter summarizes the past 60 years of jet travel and describe how these systems have created a cheaper, safer mode of travel than any other.