Smoothness, Regularity and Complete Intersection


Book Description

Written to complement standard texts on commutative algebra, this short book gives complete and relatively easy proofs of important results, including the standard results involving localisation of formal smoothness (M. André) and localisation of complete intersections (L. Avramov), some important results of D. Popescu and André on regular homomorphisms, and some results from A. Grothendieck's EGA on smooth homomorphisms. The authors make extensive use of the André–Quillen homology of commutative algebras, but only up to dimension 2, which is easy to construct, and they deliberately avoid using simplicial methods. The book also serves as an accessible introduction to some advanced topics and techniques. The only prerequisites are a basic course in commutative algebra and the first definitions in homological algebra.




Algebraic Geometry and Commutative Algebra


Book Description

Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.




Algebraic Geometry and Arithmetic Curves


Book Description

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.




Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry


Book Description

These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ''instructional'' workshop preceding the conference, there were also workshops on ''Commutative Algebra, Algebraic Geometry and Representation Theory'', ''Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ''Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.




$p$-Adic Analysis, Arithmetic and Singularities


Book Description

This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretical physics, these functions play a central role in the regularization of Feynman amplitudes and Koba-Nielsen-type string amplitudes, among other applications. This volume provides a gentle introduction to a very active area of research that lies at the intersection of number theory, $p$-adic analysis, algebraic geometry, singularity theory, and theoretical physics. Specifically, the book introduces $p$-adic analysis, the theory of Archimedean, $p$-adic, and motivic zeta functions, singularities of plane curves and their Poincaré series, among other similar topics. It also contains original contributions in the aforementioned areas written by renowned specialists. This book is an important reference for students and experts who want to delve quickly into the area of local zeta functions and their many connections in mathematics and theoretical physics.




Algebraic Geometry, Arcata 1974


Book Description







Algebraic Geometry II


Book Description

This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.




Encyclopaedia of Mathematics


Book Description