Algebraic Structures and Their Representations


Book Description

The Latin-American conference on algebra, the XV Coloquio Latinoamericano de Algebra (Cocoyoc, Mexico), consisted of plenary sessions of general interest and special sessions on algebraic combinatorics, associative rings, cohomology of rings and algebras, commutative algebra, group representations, Hopf algebras, number theory, quantum groups, and representation theory of algebras. This proceedings volume contains original research papers related to talks at the colloquium. In addition, there are several surveys presenting important topics to a broad mathematical audience. There are also two invited papers by Raymundo Bautista and Roberto Martinez, founders of the Mexican school of representation theory of algebras. The book is suitable for graduate students and researchers interested in algebra.




An Introduction to Algebraic Structures


Book Description

This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.




A Physicists Introduction to Algebraic Structures


Book Description

Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.




Representations of Algebraic Groups


Book Description

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.




Algebraic Structures


Book Description

In algebra there are four basic structures: groups, rings, fields and modules. In this book the theory of these basic structures is presented and the laws of composition - the basic operations of algebra - are studied. Essentially, no previous knowledge is required, it is only assumed as background that the reader has learned some linear algebra over the real numbers.Dieses Lehrbuch, verfasst von einem anerkannten amerikanischen Mathematiker, ist eine unkonventionelle Einführung in die Algebra. Es gibt vier grundlegende Strukturen in der Algebra: Gruppen, Ringe, Körper und Moduln. Das Buch behandelt die Theorie dieser Strukturen und beschreibt die Verknüpfungsregeln, die grundlegenden Operationen der Algebra. Die Darstellung ist elementar: es werden nur Kenntnisse der Linearen Algebra vorausgesetzt, weitere Fachkenntnisse sind nicht erforderlich.




Algebraic Structures of Symmetric Domains


Book Description

This book is a comprehensive treatment of the general (algebraic) theory of symmetric domains. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.







Algebras and Representation Theory


Book Description

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.




An Introduction to Groups, Groupoids and Their Representations


Book Description

This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.




Abelian Groups and Representations of Finite Partially Ordered Sets


Book Description

The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.