Algorithmic Learning Theory II
Author : Setsuo Arikawa
Publisher : IOS Press
Page : 324 pages
File Size : 11,5 MB
Release : 1992
Category : Algorithms
ISBN : 9784274076992
Author : Setsuo Arikawa
Publisher : IOS Press
Page : 324 pages
File Size : 11,5 MB
Release : 1992
Category : Algorithms
ISBN : 9784274076992
Author : Robert E. Schapire
Publisher : MIT Press
Page : 544 pages
File Size : 25,47 MB
Release : 2014-01-10
Category : Computers
ISBN : 0262526034
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
Author : Marcus Hutter
Publisher : Springer Science & Business Media
Page : 415 pages
File Size : 35,7 MB
Release : 2007-09-17
Category : Computers
ISBN : 3540752242
This book constitutes the refereed proceedings of the 18th International Conference on Algorithmic Learning Theory, ALT 2007, held in Sendai, Japan, October 1-4, 2007, co-located with the 10th International Conference on Discovery Science, DS 2007. The 25 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 50 submissions. They are dedicated to the theoretical foundations of machine learning.
Author : Kamalika Chaudhuri
Publisher : Springer
Page : 0 pages
File Size : 34,50 MB
Release : 2015-09-12
Category : Computers
ISBN : 9783319244853
This book constitutes the proceedings of the 26th International Conference on Algorithmic Learning Theory, ALT 2015, held in Banff, AB, Canada, in October 2015, and co-located with the 18th International Conference on Discovery Science, DS 2015. The 23 full papers presented in this volume were carefully reviewed and selected from 44 submissions. In addition the book contains 2 full papers summarizing the invited talks and 2 abstracts of invited talks. The papers are organized in topical sections named: inductive inference; learning from queries, teaching complexity; computational learning theory and algorithms; statistical learning theory and sample complexity; online learning, stochastic optimization; and Kolmogorov complexity, algorithmic information theory.
Author : Shai Shalev-Shwartz
Publisher : Cambridge University Press
Page : 415 pages
File Size : 50,15 MB
Release : 2014-05-19
Category : Computers
ISBN : 1107057132
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Author : Vladimir Vovk
Publisher : Springer Science & Business Media
Page : 344 pages
File Size : 13,54 MB
Release : 2005-03-22
Category : Computers
ISBN : 9780387001524
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Author : Daniel A. Roberts
Publisher : Cambridge University Press
Page : 473 pages
File Size : 22,9 MB
Release : 2022-05-26
Category : Computers
ISBN : 1316519333
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Author : David J. C. MacKay
Publisher : Cambridge University Press
Page : 694 pages
File Size : 28,2 MB
Release : 2003-09-25
Category : Computers
ISBN : 9780521642989
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Author : Michael J. Kearns
Publisher : MIT Press
Page : 230 pages
File Size : 42,96 MB
Release : 1994-08-15
Category : Computers
ISBN : 9780262111935
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.
Author : Setsuo Arikawa
Publisher : Springer Science & Business Media
Page : 600 pages
File Size : 22,88 MB
Release : 1994-09-28
Category : Computers
ISBN : 9783540585206
This volume presents the proceedings of the Fourth International Workshop on Analogical and Inductive Inference (AII '94) and the Fifth International Workshop on Algorithmic Learning Theory (ALT '94), held jointly at Reinhardsbrunn Castle, Germany in October 1994. (In future the AII and ALT workshops will be amalgamated and held under the single title of Algorithmic Learning Theory.) The book contains revised versions of 45 papers on all current aspects of computational learning theory; in particular, algorithmic learning, machine learning, analogical inference, inductive logic, case-based reasoning, and formal language learning are addressed.