Algorithmic Probability and Combinatorics


Book Description

This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume present a variety of saddle-point and geometric methods for the asymptotic analysis of the coefficients of single-and multivariable generating functions associated with combinatorial objects and discrete random structures. The volume should appeal to pure and applied mathematicians, as well as mathematical physicists; in particular, anyone interested in computational aspects of probability, combinatories and enumeration. Furthermore, the expository or partly expository papers included in this volume should serve as an entry point to this literature not only to experts in other areas, but also to graduate students.




Algorithmic Probability


Book Description

This unique text collects more than 400 problems in combinatorics, derived distributions, discrete and continuous Markov chains, and models requiring a computer experimental approach. The first book to deal with simplified versions of models encountered in the contemporary statistical or engineering literature, Algorithmic Probability emphasizes correct interpretation of numerical results and visualization of the dynamics of stochastic processes. A significant contribution to the field of applied probability, Algorithmic Probability is ideal both as a secondary text in probability courses and as a reference. Engineers and operations analysts seeking solutions to practical problems will find it a valuable resource, as will advanced undergraduate and graduate students in mathematics, statistics, operations research, industrial and electrical engineering, and computer science.




Probabilistic Methods for Algorithmic Discrete Mathematics


Book Description

Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.




Combinatorics and Probability


Book Description

This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.




Analytic Combinatorics


Book Description

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.




The Probabilistic Method


Book Description

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.




Geometric Algorithms and Combinatorial Optimization


Book Description

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.




Combinatorial Algorithms


Book Description

Covers key recent advances in combinatorial algorithms.




Combinatorial Algorithms


Book Description

This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.




Modern Cryptography, Probabilistic Proofs and Pseudorandomness


Book Description

Cryptography is one of the most active areas in current mathematics research and applications. This book focuses on cryptography along with two related areas: the study of probabilistic proof systems, and the theory of computational pseudorandomness. Following a common theme that explores the interplay between randomness and computation, the important notions in each field are covered, as well as novel ideas and insights.