Meshless Algorithms for Modelling and Simulation of Cutting of Soft Tissue for Surgical Simulation


Book Description

[Truncated abstract] Surgical simulation can extend surgeons' ability to learn, plan and carry out surgical interventions more accurately and less invasively. Despite advances in computational biomechanics, modelling of soft tissue cutting remains one of the most challenging problems in surgical simulation. The significant challenges are posed by the complexity of introducing the cutting-induced discontinuity, the difficulty of modelling geometric and material nonlinearities and the need to achieve a high computation speed. Most published works of surgical simulation use mass-spring models or isotropic linear elastic models to achieve fast computation speed. However, these models cannot account for the intrinsic nonlinear behaviour of soft tissue. In this thesis, a set of novel Meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) algorithms, which takes into account both geometric and material nonlinearities, was developed to robustly simulate the responses of soft tissue during surgery. These algorithms consist of the MTLADR two-dimensional (2D) algorithm, the MTLADR 2D cutting algorithm, the MTLADR three-dimensional (3D) algorithm and the MTLADR 3D cutting algorithm. Belonging to the element-free Galerkin (EFG) family, these algorithms feature a spatial discretisation and approximation based solely on nodes. The accuracy of the algorithms was verified against the established nonlinear static solution procedures available in the commercial finite element software Abaqus. The MTLADR 2D algorithm was developed for 2D simulation of large deformations of soft tissue prior to surgical cutting. The rationale for using the EFG method, the total Lagrangian formulation and the adaptive dynamic relaxation (DR) was demonstrated in this algorithm. Numerical experiments were conducted to predict the 2D responses of a soft tissue-like specimen to a wide range of large strains (up to 100% of the undeformed length). The numerical results agreed well with the Abaqus reference solutions. The MTLADR 2D cutting algorithm was developed for 2D simulation of the steady state responses of soft tissue at any stage of surgical cutting. The cutting-induced discontinuity was introduced by efficiently implementing the visibility criterion with the aid of the level set method. The cutting-induced deformation was then computed by an adaption of the MTLADR 2D algorithm. Numerical experiments were conducted to predict the 2D behaviour of a stretched soft tissue-like specimen during cutting. Since simulation of cutting is not supported by Abaqus, the deformed configuration of a specimen with pre-introduced discontinuities was simulated for verification. The strain energy, reaction force and nodal displacements predicted by the MTLADR 2D cutting algorithm exhibited good agreement with the Abaqus reference solutions. The MTLADR 3D algorithm was developed for 3D simulation of large deformations of soft tissue prior to surgical cutting. This algorithm is a general extension of the MTLADR 2D algorithm. Numerical experiments were conducted to predict the 3D responses of a soft tissue-like specimen to a wide range of large strains (up to 100% of the undeformed length)...







Finite Element Modeling of Soft Tissue Deformation


Book Description

Computer-aided minimally invasive surgery (MIS) has progressed significantly in the last decade and it has great potential in surgical planning and operations. To limit the damage to nearby healthy tissue, accurate modeling is required of the mechanical behavior of a target soft tissue subject to surgical manipulations. Therefore, the study of soft tissue deformations is important for computer-aided (MIS) in surgical planning and operation, or in developing surgical simulation tools or systems. The image acquisition facilities are also important for prediction accuracy. This dissertation addresses partial differential and integral equations (PDIE) based biomechanical modeling of soft tissue deformations incorporating the specific material properties to characterize the soft tissue responses for certain human interface behaviors. To achieve accurate simulation of real tissue deformations, several biomechanical finite element (FE) models are proposed to characterize liver tissue. The contribution of this work is in theoretical and practical aspects of tissue modeling. High resolution imaging techniques of Micro Computed Tomography (Micro-CT) and Cone Beam Computed Tomography (CBCT) imaging are first proposed to study soft tissue deformation in this dissertation. These high resolution imaging techniques can detect the tissue deformation details in the contact region between the tissue and the probe for small force loads which would be applied to a surgical probe used. Traditional imaging techniques in clinics can only achieve low image resolutions. Very small force loads seen in these procedures can only yield tissue deformation on the few millimeters to sub-millimeter scale. Small variations are hardly to detect. Furthermore, if a model is validated using high resolution images, it implies that the model is true in using the same model for low resolution imaging facilities. The reverse cannot be true since the small variations at the sub-millimeter level cannot be detected. In this dissertation, liver tissue deformations, surface morphological changes, and volume variations are explored and compared from simulations and experiments. The contributions of the dissertation are as follows. For liver tissue, for small force loads (5 grams to tens of grams), the linear elastic model and the neo-Hooke's hyperelastic model are applied and shown to yield some discrepancies among them in simulations and discrepancies between simulations and experiments. The proposed finite element models are verified for liver tissue. A general FE modeling validation system is proposed to verify the applicability of FE models to the soft tissue deformation study. The validation of some FE models is performed visually and quantitatively in several ways in comparison with the actual experimental results. Comparisons among these models are also performed to show their advantages and disadvantages. The method or verification system can be applied for other soft tissues for the finite element analysis of the soft tissue deformation. For brain tissue, an elasticity based model was proposed previously employing local elasticity and Poisson's ratio. It is validated by intraoperative images to show more accurate prediction of brain deformation than the linear elastic model. FE analysis of brain ventricle shape changes was also performed to capture the dynamic variation of the ventricles in author's other works. There, for the safety reasons, the images for brain deformation modeling were from Magnetic Resonance Imaging (MRI) scanning which have been used for brain scanning. The measurement process of material properties involves the tissue desiccation, machine limits, human operation errors, and time factors. The acquired material parameters from measurement devices may have some difference from the tissue used in real state of experiments. Therefore, an experimental and simulation based method to inversely evaluate the material parameters is proposed and compared with the material parameters measured by devices. As known, the finite element method (FEM) is a comprehensive and accurate method used to solve the PDIE characterizing the soft tissue deformation in the three dimensional tissue domain, but the computational task is very large in implementation. To achieve near real time simulation and still a close solution of soft tissue deformation, region-of-interest (ROI) based sub-modeling is proposed and the accuracy of the simulated deformations are explored over concentric regions of interest. Such a ROI based FE modeling is compared to the FE modeling over the whole tissue and its efficiency is shown and as well as its influence in practical applications such as endoscopic surgical simulation.







Computational Biomechanics for Medicine


Book Description

One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Models, Algorithms and Implementation collects the papers from the Seventh Computational Biomechanics for Medicine Workshop held in Nice in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.




Finite Element Analysis for Biomedical Engineering Applications


Book Description

Finite element analysis has been widely applied to study biomedical problems. This book aims to simulate some common medical problems using finite element advanced technologies, which establish a base for medical researchers to conduct further investigations. This book consists of four main parts: (1) bone, (2) soft tissues, (3) joints, and (4) implants. Each part starts with the structure and function of the biology and then follows the corresponding finite element advanced features, such as anisotropic nonlinear material, multidimensional interpolation, XFEM, fiber enhancement, UserHyper, porous media, wear, and crack growth fatigue analysis. The final section presents some specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent. All modeling files are attached in the appendixes of the book. This book will be helpful to graduate students and researchers in the biomedical field who engage in simulations of biomedical problems. The book also provides all readers with a better understanding of current advanced finite element technologies. Details finite element modeling of bone, soft tissues, joints, and implants Presents advanced finite element technologies, such as fiber enhancement, porous media, wear, and crack growth fatigue analysis Discusses specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent Explains principles for modeling biology Provides various descriptive modeling files




Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation


Book Description

This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing.




Computational Biomechanics for Medicine


Book Description

Computational Biomechanics for Medicine: Solid and fluid mechanics for the benefit of patients contributions and papers from the MICCAI Computational Biomechanics for Medicine Workshop help in conjunction with Medical Image Computing and Computer Assisted Intervention conference (MICCAI 2020) in Lima, Peru. The content is dedicated to research in the field of methods and applications of computational biomechanics to medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, analysis of injury mechanisms, implant and prostheses design, as well as artificial organ design and medical robotics. This book appeals to researchers, students and professionals in the field.




Nonlinear Continuum Mechanics for Finite Element Analysis


Book Description

A unified treatment of nonlinear continuum analysis and finite element techniques.