Algorithms Illuminated, Part 1


Book Description

Algorithms Illuminated is an accessible introduction to algorithms for anyone with at least a little programming experience, based on a sequence of popular online courses. Part 1 covers asymptotic analysis and big-O notation, divide-and-conquer algorithms, randomized algorithms, and several famous algorithms for sorting and selection.




Algorithms Illuminated


Book Description




Algorithms Illuminated (Part 3)


Book Description

Accessible, no-nonsense, and programming language-agnostic introduction to algorithms. Part 3 covers greedy algorithms (scheduling, minimum spanning trees, clustering, Huffman codes) and dynamic programming (knapsack, sequence alignment, shortest paths, optimal search trees).




Beyond the Worst-Case Analysis of Algorithms


Book Description

Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.




Algorithms


Book Description

This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include:The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated. Carefully chosen advanced topics that can be skipped in a standard one-semester course but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text DasGupta also offers a Solutions Manual which is available on the Online Learning Center."Algorithms is an outstanding undergraduate text equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel it is a joy to read." Tim Roughgarden Stanford University




Twenty Lectures on Algorithmic Game Theory


Book Description

Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern computer science, ranging from resource allocation in large networks to online advertising, involve interactions between multiple self-interested parties. Economics and game theory offer a host of useful models and definitions to reason about such problems. The flow of ideas also travels in the other direction, and concepts from computer science are increasingly important in economics. This book grew out of the author's Stanford University course on algorithmic game theory, and aims to give students and other newcomers a quick and accessible introduction to many of the most important concepts in the field. The book also includes case studies on online advertising, wireless spectrum auctions, kidney exchange, and network management.




Algorithms, Part II


Book Description

This book is Part II of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part II contains Chapters 4 through 6 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.




Game Programming Algorithms and Techniques


Book Description

Game Programming Algorithms and Techniques is a detailed overview of many of the important algorithms and techniques used in video game programming today. Designed for programmers who are familiar with object-oriented programming and basic data structures, this book focuses on practical concepts that see actual use in the game industry. Sanjay Madhav takes a unique platform- and framework-agnostic approach that will help develop virtually any game, in any genre, with any language or framework. He presents the fundamental techniques for working with 2D and 3D graphics, physics, artificial intelligence, cameras, and much more. Each concept is illuminated with pseudocode that will be intuitive to any C#, Java, or C++ programmer, and has been refined and proven in Madhav's game programming courses at the University of Southern California. Review questions after each chapter help solidify the most important concepts before moving on. Madhav concludes with a detailed analysis of two complete games: a 2D iOS side-scroller (written in Objective-Cusing cocos2d) and a 3D PC/Mac/Linux tower defense game (written in C# using XNA/ MonoGame). These games illustrate many of the algorithms and techniques covered in the earlier chapters, and the full source code is available at gamealgorithms.net. Coverage includes Game time management, speed control, and ensuring consistency on diverse hardware Essential 2D graphics techniques for modern mobile gaming Vectors, matrices, and linear algebra for 3D games 3D graphics including coordinate spaces, lighting and shading, z-buffering, and quaternions Handling today's wide array of digital and analog inputs Sound systems including sound events, 3D audio, and digital signal processing Fundamentals of game physics, including collision detection and numeric integration Cameras: first-person, follow, spline, and more Artificial intelligence: pathfinding, state-based behaviors, and strategy/planning User interfaces including menu systems and heads-up displays Scripting and text-based data files: when, how, and where to use them Basics of networked games including protocols and network topology




Algorithms Unlocked


Book Description

For anyone who has ever wondered how computers solve problems, an engagingly written guide for nonexperts to the basics of computer algorithms. Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen—coauthor of the leading college textbook on the subject—provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems. Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order (“sorting”); how to solve basic problems that can be modeled in a computer with a mathematical structure called a “graph” (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.




Grokking Algorithms


Book Description

"This book does the impossible: it makes math fun and easy!" - Sander Rossel, COAS Software Systems Grokking Algorithms is a fully illustrated, friendly guide that teaches you how to apply common algorithms to the practical problems you face every day as a programmer. You'll start with sorting and searching and, as you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. Learning about algorithms doesn't have to be boring! Get a sneak peek at the fun, illustrated, and friendly examples you'll find in Grokking Algorithms on Manning Publications' YouTube channel. Continue your journey into the world of algorithms with Algorithms in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/algorithms-?in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology An algorithm is nothing more than a step-by-step procedure for solving a problem. The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to understand them but refuse to slog through dense multipage proofs, this is the book for you. This fully illustrated and engaging guide makes it easy to learn how to use the most important algorithms effectively in your own programs. About the Book Grokking Algorithms is a friendly take on this core computer science topic. In it, you'll learn how to apply common algorithms to the practical programming problems you face every day. You'll start with tasks like sorting and searching. As you build up your skills, you'll tackle more complex problems like data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. By the end of this book, you will have mastered widely applicable algorithms as well as how and when to use them. What's Inside Covers search, sort, and graph algorithms Over 400 pictures with detailed walkthroughs Performance trade-offs between algorithms Python-based code samples About the Reader This easy-to-read, picture-heavy introduction is suitable for self-taught programmers, engineers, or anyone who wants to brush up on algorithms. About the Author Aditya Bhargava is a Software Engineer with a dual background in Computer Science and Fine Arts. He blogs on programming at adit.io. Table of Contents Introduction to algorithms Selection sort Recursion Quicksort Hash tables Breadth-first search Dijkstra's algorithm Greedy algorithms Dynamic programming K-nearest neighbors