Alkali-Activated Cements and Concretes


Book Description

The first English-language book which reviews and summarizes worldwide research advances in alkali-activated cements and concrete. Essential topics include: raw materials and their properties for the production of the two new types of binder the hydration and microstructure development of alkali-activated slag cements the mechanical properties and durability of alkali-activated slag cement and concrete other various cementing systems and their applications related standards and specifications. This respected team of authors has produced an important piece of research that will be of great interest to professionals and academics alike, enabling the production of more durable and environmentally sensitive materials.




Handbook of Alkali-Activated Cements, Mortars and Concretes


Book Description

This book provides an updated state-of-the-art review on new developments in alkali-activation. The main binder of concrete, Portland cement, represents almost 80% of the total CO2 emissions of concrete which are about 6 to 7% of the Planet’s total CO2 emissions. This is particularly serious in the current context of climate change and it could get even worse because the demand for Portland cement is expected to increase by almost 200% by 2050 from 2010 levels, reaching 6000 million tons/year. Alkali-activated binders represent an alternative to Portland cement having higher durability and a lower CO2 footprint. Reviews the chemistry, mix design, manufacture and properties of alkali-activated cement-based concrete binders Considers performance in adverse environmental conditions. Offers equal emphasis on the science behind the technology and its use in civil engineering.




Handbook of advances in Alkali-activated Concrete


Book Description

Advances on Alkali-activated Concrete, provides comprehensive information on materials, structural properties and realistic potential for the application of alkali-activated concretes and cements. Divided over seven key parts, including the design of alkali-activated concrete, their fabrication and curing, rheology, properties of alkali-activated concrete, durability, dynamic performance and LCA, the book will be an essential reference resource for academic and industrial researchers, materials scientists, chemists, manufacturers and civil engineers working with alkali-activated materials and concrete structures. Provides an essential guide on the latest developments in alkali-activated concrete Comprehensively examines alkali-activated concrete performance under cyclic loading Includes concrete systems containing coarser aggregates Presents several important cases studies of application




Alkali Activated Materials


Book Description

This is a State of the Art Report resulting from the work of RILEM Technical Committee 224-AAM in the period 2007-2013. The Report summarises research to date in the area of alkali-activated binders and concretes, with a particular focus on the following areas: binder design and characterisation, durability testing, commercialisation, standardisation, and providing a historical context for this rapidly-growing research field.




Geopolymers


Book Description

A geopolymer is a solid aluminosilicate material usually formed by alkali hydroxide or alkali silicate activation of a solid precursor such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of reduced-CO2 construction materials as an alternative to Portland-based cements. Geopolymers: structure, processing, properties and industrial applications reviews the latest research on and applications of these highly important materials.Part one discusses the synthesis and characterisation of geopolymers with chapters on topics such as fly ash chemistry and inorganic polymer cements, geopolymer precursor design, nanostructure/microstructure of metakaolin and fly ash geopolymers, and geopolymer synthesis kinetics. Part two reviews the manufacture and properties of geopolymers including accelerated ageing of geopolymers, chemical durability, engineering properties of geopolymer concrete, producing fire and heat-resistant geopolymers, utilisation of mining wastes and thermal properties of geopolymers. Part three covers applications of geopolymers with coverage of topics such as commercialisation of geopolymers for construction, as well as applications in waste management.With its distinguished editors and international team of contributors, Geopolymers: structure, processing, properties and industrial applications is a standard reference for scientists and engineers in industry and the academic sector, including practitioners in the cement and concrete industry as well as those involved in waste reduction and disposal. Discusses the synthesis and characterisation of geopolymers with chapters covering fly ash chemistry and inorganic polymer cements Assesses the application and commercialisation of geopolymers with particular focus on applications in waste management Reviews the latest research on and applications of these highly important materials




Handbook of Low Carbon Concrete


Book Description

Handbook of Low Carbon Concrete brings together the latest breakthroughs in the design, production, and application of low carbon concrete. In this handbook, the editors and contributors have paid extra attention to the emissions generated by coarse aggregates, emissions due to fine aggregates, and emissions due to cement, fly ash, GGBFS, and admixtures. In addition, the book provides expert coverage on emissions due to concrete batching, transport and placement, and emissions generated by typical commercially produced concretes. Includes the tools and methods for reducing the emissions of greenhouse gases Explores technologies, such as carbon capture, storage, and substitute cements Provides essential data that helps determine the unique factors involved in designing large, new green cement plants




Interfacial Transition Zone in Concrete


Book Description

An important new state-of-the-art report prepared by RILEM Technical Committee 108 ICC. It has been written by a team of leading international experts from the UK, USA, Canada, Israel, Germany, Denmark, South Africa, Italy and France. Research studies over recent years in the field of cement science have focused on the behaviour of the interfaces between the components of cement-based materials. The techniques used in other areas of materials science are being applied to the complex materials found in cements and concretes, and this book provides a significant survey of the present state of the art.







Eco-efficient concrete


Book Description

Portland cement-based products (primarily concretes) are the world’s most commonly used building materials. Due to its huge production worldwide, the Portland cement industry poses economic, energy and environmental problems (7% of total world-wide co2 emissions). International concern over how to reduce co2 emissions has given rise within the scientific community to a growing interest in the development of materials and technologies able to reduce the impact of Portland cement and make construction a more sustainable industry. One of the possible alternative materials whose study and use has intensified in recent years is so-called alkaline cement, produced by alkali-activating aluminosilicates, whether of natural or industrial (blast furnace slag, fly ash, etc.) origin. Based on the nature of their cementitious components (the CaO–SiO2–Al2O3 system), alkaline cements may be grouped under two main categories: high-calcium and low-calcium cements. The reaction products governing the characteristics of the two types of end product differ. While the main reaction product precipitating in calcium-rich systems is a C-A-S-H type gel, in low calcium systems the reaction product is a N-A-S-H gel. A third type of alkaline cement, blended or hybrid cements, is a combination of the above. In this group, the reaction products comprise complex mixes of C-A-S-H + N-A-S-H gels. This chapter stresses the interest that has arisen around the study of these new cementitious systems.




Proceedings of SECON’21


Book Description

This book gathers peer-reviewed contributions presented at the International Conference on Structural Engineering and Construction Management (SECON’21), held on 12-15 May 2021. The meeting served as a fertile platform for discussion, sharing sound knowledge and introducing novel ideas on issues related to sustainable construction and design for the future. The respective contributions address various aspects of numerical modeling and simulation in structural engineering, structural dynamics and earthquake engineering, advanced analysis and design of foundations, BIM, building energy management, and technical project management. Accordingly, the book offers a valuable, up-to-date tool and essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.