Alterations of Chemical Equilibrium in the Nervous System


Book Description

It has been recognized for more than a thousand years that the function of the brain, like the function of the other organs of the body, is determined by its physical, chemical, and biological properties. Evidence that even its highest functions could be explained by these properties was gathered only in recent years, however; these findings, which clearly have to be confirmed by a great deal of further experimental evidence, indicate that most, if not all, of the functions of the brain are based on its bio chemical and biophysical mechanisms. This at first hearing may sound rather simple, but the ability to understand learning, emotion, perhaps even creativity, on biological terms may well be the most important scientific discovery of all time. Few pieces of knowledge can influence our future health and well-being to the degree that understanding of mental mechanisms will. It has been clearly shown in many ways in the previous volumes of this Handbook that from the biochemical or neurochemical point of view the brain is one of the most active organs. The brain seems stable and in some respects permanent; this is evidence not of inactivity but of carefully controlled homeostasis, of dynamic rather than static equilibrium, with most components undergoing metabolic alterations.




Alterations of Chemical Equilibrium in the Nervous System


Book Description

It has been recognized for more than a thousand years that the function of the brain, like the function of the other organs of the body, is determined by its physical, chemical, and biological properties. Evidence that even its highest functions could be explained by these properties was gathered only in recent years, however; these findings, which clearly have to be confirmed by a great deal of further experimental evidence, indicate that most, if not all, of the functions of the brain are based on its bio chemical and biophysical mechanisms. This at first hearing may sound rather simple, but the ability to understand learning, emotion, perhaps even creativity, on biological terms may well be the most important scientific discovery of all time. Few pieces of knowledge can influence our future health and well-being to the degree that understanding of mental mechanisms will. It has been clearly shown in many ways in the previous volumes of this Handbook that from the biochemical or neurochemical point of view the brain is one of the most active organs. The brain seems stable and in some respects permanent; this is evidence not of inactivity but of carefully controlled homeostasis, of dynamic rather than static equilibrium, with most components undergoing metabolic alterations.













Alterations of Metabolites in the Nervous System


Book Description

In neurosciences one may say, '"All roads lead to Rome. " It seems as though wherever one starts, the course of investigation leads to the same major ques tions about nervous system function and dysfunction. In thinking about what to write in this preface, it occurred to me that it might be best to deal with that with which I am most familiar and to trace to some extent my own '"road to Rome. '' As I look over my work of the last 37 years, it becomes clear to me that it can be epitomized as a search for patterns. What usually began as a single minded devotion to in-depth analysis of one or a small number of variables always has led to questions of how the results might relate to the whole living unit, whether it is cell, tissue, or organism. For a number of years after my discovery in the vertebrate central nervous system of -y-aminobutyric acid (GABA) and the enzyme which forms it, L glutamate decarboxylase (GAD), and the identification of GABA as a major inhibitory neurotransmitter by others, I felt that my laboratory, largely bio chemical, was wandering in the wilderness of the complexities of the vertebrate CNS without definitively coming to terms with problems related to GABAergic transmitter functions and the roles of GABA neurons in information processing.










Current Science


Book Description