Advances in Air Conditioning and Refrigeration


Book Description

This book presents selected peer-reviewed papers from the International Conference on Recent Advancements in Air Conditioning and Refrigeration (RAAR) 2019. The focus is on current research in a very topical area of HVAC technology, which has wide-ranging applications. The topics covered include modern air conditioning and refrigeration practices, environment-friendly refrigerants, high-performance components, computer-assisted design, manufacture, operations and data management, energy-efficient buildings, and application of solar energy to heating and air conditioning. This book is useful for researchers and industry professionals working in the field of heating, air conditioning and refrigeration.




Refrigeration Systems and Applications


Book Description

The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.




Refrigeration units in marine vessels


Book Description

Fishing vessels can be equipped with energy efficient refrigeration technology applying natural working fluids. Ammonia refrigeration systems have been the first choice, but CO2 units have also become increasingly common in the maritime sector in the last few years. When retrofitting or implementing CO2 refrigeration plants, less space on board is required and such units allow good service and maintenance. Nowadays, cruise ship owners prefer CO2 units for the provision refrigeration plants.Ship owners, responsible for the health and safety of the crew and passengers, must carefully evaluate the usage of flammable low GWP working fluids, due to a high risk that toxic decomposition products are formed, even without the presence of an open flame. Suggestions for further work include a Nordic Technology Hub for global marine refrigeration R&D and development support for key components.




Causes and Environmental Implications of Increased UV-B Radiation


Book Description

Since the realisation that the ozone layer protecting the earth is suffering massive depletion, atmospheric science has been increasingly in the spotlight. It is recognised that we need to increase our knowledge and understanding of the likely impact that increases in UV-B radiation will have on life on earth. Charting research that encompasses the changing distribution of atmospheric ozone, changes in UV-B radiation and the consequent effects on photochemistry and biological systems in the aquatic and terrestrial environments, Causes and Environmental Implications of Increased UV-B Radiation draws together experts from the international community. Also included is a discussion of the emotive and highly topical subject of skin cancer as related to increased UV-B radiation. As an up-to-date and authoritative summary of the state of this highly complex science, this book will be welcomed by all practitioners and researchers in the field.




Concentrated Solar Thermal Energy Technologies


Book Description

The proceedings entitled “Concentrated Solar Thermal Technologies: Recent Trends and Applications” includes the peer-reviewed selected papers those are presented during NCSTET 2016. The sub-topics under concentrated solar thermal technologies and applications included in the book are Solar Field; Receiver and Heat Exchanger; Coating; Thermal Energy Storage; Cooling; Process Heat; and Smart Grid and Policy Research. The domains mentioned cover topics from resource-assessment, collection to conversion of solar energy for applications, like, heating, cooling and electricity. The proceedings also include invited lectures from domain experts. The edited work will be useful for beginners and for the advanced level researchers in the field of concentrated solar thermal technologies and their applications.










Refrigeration, Air Conditioning and Heat Pumps


Book Description

Refrigeration, air conditioning, and heat pumps (RACHP) have an important impact on the final energy uses of many sectors of modern society, such as residential, commercial, industrial, transport, and automotive. Moreover, RACHP also have an important environmental impact due to the working fluids that deplete the stratospheric ozone layer, which are being phased out according to the Montreal Protocol (1989). Last, but not least, high global working potential (GWP), working fluids (directly), and energy consumption (indirectly) are responsible for a non-negligible quota of greenhouse gas (GHG) emissions in the atmosphere, thus impacting climate change.







Cryocoolers 13


Book Description

The last two years have witnessed a continuation in the breakthrough shift toward pulse tube cryocoolers for long-life, high-reliability cryocooler applications. New this year are papers de scribing the development of very large pulse tube cryocoolers to provide up to 1500 watts of cooling for industrial applications such as cooling the superconducting magnets of Mag-lev trains, coolmg superconducting cables for the power mdustry, and liquefymg natural gas. Pulse tube coolers can be driven by several competing compressor technologies. One class of pulse tube coolers is referred to as "Stirling type" because they are based on the linear Oxford Stirling-cooler type compressor; these generally provide coolmg m the 30 to 100 K temperature range and operate ^t frequencies from 30 to 60 Hz. A second type of pulse tube cooler is the so-called "Gifford-McMahon type. " Pulse tube coolers of this type use a G-M type compressor and lower frequency operation (~1 Hz) to achieve temperatures in the 2 to 10 K temperature range. The third type of pulse tube cooler is driven by a thermoacoustic oscillator, a heat engine that functions well in remote environments where electricity is not readily available. All three types are described, and in total, nearly half of this proceedings covers new developments in the pulse tube arena. Complementing the work on low-temperature pulse tube and Gifford-McMahon cryocoolers is substantial continued progress on rare earth regenerator materials.