The Welfare Economics of Alternative Renewable Resource Strategies


Book Description

This study, originally published in 1990, seeks to address several important policy questions associated with the ongoing depletion of forested wetlands. First, in the context of Environmental Impact Statements, should the estimated areas of impact of Federal flood-control and drainage projects on wetlands be limited to (minimal) construction impacts, or should they include impacts which occur when such projects cause private landowners to drain and clear their wetland holdings? A second crucial question is whether wetland depletion and conversion to agricultural cropland has been excessive. This title will be of interest to students of Environmental Economics and Policy.




Renewable and Alternative Energy


Book Description

Provides a comprehensive overview of emerging perspectives and innovations for alternative energy sources. Highlighting relevant concepts on energy efficiency, current technologies, and ongoing industry trends, this is an ideal reference source for academics, practitioners, professionals, and upper-level students interested in the latest research on renewable energy.




Renewable Energy and Wildlife Conservation


Book Description

Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero




The Welfare Economics of Alternative Renewable Resource Strategies


Book Description

This study, originally published in 1990, seeks to address several important policy questions associated with the ongoing depletion of forested wetlands. First, in the context of Environmental Impact Statements, should the estimated areas of impact of Federal flood-control and drainage projects on wetlands be limited to (minimal) construction impacts, or should they include impacts which occur when such projects cause private landowners to drain and clear their wetland holdings? A second crucial question is whether wetland depletion and conversion to agricultural cropland has been excessive. This title will be of interest to students of Environmental Economics and Policy.




Renewable and Alternative Energy Resources


Book Description

Renewable and Alternative Energy Resources provides comprehensive information on the status of all renewable and non-renewable energy resources. Chapters discuss the technological developments and environmental impacts of each energy source, giving a valuable reference of up-to-date scientific progress, technical application and comparative ecological analysis of each source. In addition to understanding the process involved in generating energy, the book looks at possible merits and demerits relevant to environmental problems, highlighting the importance of the implementation of sustainable, approachable, cost effective and durable renewable energy resources. Designed to highlight relevant concepts on energy efficiency, current technologies and ongoing industrial trends, this is an ideal reference source for academics, practitioners, professionals and upper-level students interested in the latest research on renewable energy. - Discusses developments in both renewable and non-renewable energy sources - Highlights the status of exploitive, experimental studies conducted on the global status of alternative energies - Outlines novel opportunities for improving technologies for the billion-dollar renewable industry




Renewable Energy Sources and Climate Change Mitigation


Book Description

This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.




The Power of Renewables


Book Description

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.




Green Alternatives and National Energy Strategy


Book Description

It is no secret that the United States' dependence on oil -- mostly foreign -- puts the country in a precarious position. The United States needs innovative ways not only to power millions of automobiles on its highways but also to secure sustainable sources of fuel for the future. This book presents the latest facts and figures about alternative energy to any physicist, engineer, policymaker, or concerned citizen who needs a reliable source of information on the nation's looming energy crisis. Philip G. Gallman focuses especially on green vehicles and the interrelationship between their design and various energy sources. He explains simply and clearly the complex energy and automotive engineering issues involved in developing green vehicles, measures their likely effect on energy resource demand, and considers what they might mean for national energy strategy. Addressing problems associated with renewable resources often overlooked or ignored in the popular press, Gallman explains what replacing oil with alternative sources of energy realistically entails. Can the nation satisfy its energy demands with wind turbines, solar power, hydroelectric power, or geothermal power? Is biodiesel or electricity the answer to our gas-guzzling ways? Organized logically and with an accessible narrative, Green Alternatives and National Energy Strategy guides readers through the essential questions and hurdles the United States must answer and overcome to transition from a petroleum-dependent nation to one that runs on sustainable, renewable energy.







Electric Renewable Energy Systems


Book Description

- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells