Alternative Sources of Energy Modeling and Automation


Book Description

Micro-power domestic organic Rankine cycle (ORC) systems and the selection of the expander and the working fluid are presented, analyzed thoroughly, and numerically evaluated. A promising decentralized hybrid PV-SOFC system is investigated for providing useful energy supply to commercial buildings, capable of power and heat generation at a lower cost. A hybrid solar-combined cycle power plant integrated with a packed-bed thermal energy storage system with a novel recycling configuration enables robust control of collector temperature and net power during times of high solar activity. An automated hybrid (solar and biomass) power plant for thermal energy production for indoor space heating loads coverage is presented. A comprehensive and up-to-date literature review is presented of non-iterative methods for the extraction of the single diode model parameters of photovoltaic modules. A prototype custom built two-speed gearbox with a single stage transmission electric vehicle achieves significant reductions in the overall energy consumption. Two new fuzzy models are presented of high concentrator photovoltaics using the high-accuracy Takagi–Sugeno–Kang approach and the ease of interpreting the Mamdani linguistic rules. Finally, the impact of plug-in hybrid electric vehicles (PHEVs) in the primary frequency regulation is studied and the effects of PHEVs in non-interconnected isolated power systems with significant renewable energy source (RES) penetration are demonstrated through simulations of the isolated power system of Cyprus Island.




Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation


Book Description

An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice.




Alternative Sources of Energy Modeling and Automation


Book Description

Micro-power domestic organic Rankine cycle (ORC) systems and the selection of the expander and the working fluid are presented, analyzed thoroughly, and numerically evaluated. A promising decentralized hybrid PV-SOFC system is investigated for providing useful energy supply to commercial buildings, capable of power and heat generation at a lower cost. A hybrid solar-combined cycle power plant integrated with a packed-bed thermal energy storage system with a novel recycling configuration enables robust control of collector temperature and net power during times of high solar activity. An automated hybrid (solar and biomass) power plant for thermal energy production for indoor space heating loads coverage is presented. A comprehensive and up-to-date literature review is presented of non-iterative methods for the extraction of the single diode model parameters of photovoltaic modules. A prototype custom built two-speed gearbox with a single stage transmission electric vehicle achieves significant reductions in the overall energy consumption. Two new fuzzy models are presented of high concentrator photovoltaics using the high-accuracy Takagi-Sugeno-Kang approach and the ease of interpreting the Mamdani linguistic rules. Finally, the impact of plug-in hybrid electric vehicles (PHEVs) in the primary frequency regulation is studied and the effects of PHEVs in non-interconnected isolated power systems with significant renewable energy source (RES) penetration are demonstrated through simulations of the isolated power system of Cyprus Island.




Building Energy Modeling with OpenStudio


Book Description

This textbook teaches the fundamentals of building energy modeling and analysis using open source example applications built with the US DOE’s OpenStudio modeling platform and EnergyPlus simulation engine. Designed by researchers at US National Laboratories to support a new generation of high performance buildings, EnergyPlus and OpenStudio are revolutionizing how building energy modeling is taught in universities and applied by professional architects and engineers around the world. The authors, all researchers at National Renewable Energy Laboratory and members of the OpenStudio software development team, present modeling concepts using open source software that may be generally applied using a variety of software tools commonly used by design professionals. The book also discusses modeling process automation in the context of OpenStudio Measures—small self-contained scripts that can transform energy models and their data—to save time and effort. They illustrate key concepts through a sophisticated example problem that evolves in complexity throughout the book. The text also examines advanced topics including daylighting, parametric analysis, uncertainty analysis, design optimization, and model calibration. Building Energy Modeling with OpenStudio teaches students to become sophisticated modelers rather than simply proficient software users. It supports undergraduate and graduate building energy courses in Architecture, and in Mechanical, Civil, Architectural, and Sustainability Engineering.




Integration of Alternative Sources of Energy


Book Description

A unique electrical engineering approach to alternative sources ofenergy Unlike other books that deal with alternative sources of energyfrom a mechanical point of view, Integration of Alternative Sourcesof Energy takes an electrical engineering perspective. Moreover,the authors examine the full spectrum of alternative and renewableenergy with the goal of developing viable methods of integratingenergy sources and storage efficiently. Readers become thoroughlyconversant with the principles, possibilities, and limits ofalternative and renewable energy. The book begins with a general introduction and then reviewsprinciples of thermodynamics. Next, the authors explore both commonand up-and-coming alternative energy sources, including hydro,wind, solar, photovoltaic, thermosolar, fuel cells, and biomass.Following that are discussions of microturbines and inductiongenerators, as well as a special chapter dedicated to energystorage systems. After setting forth the fundamentals, the authorsfocus on how to integrate the various energy sources for electricalpower production. Discussions related to system operation,maintenance, and management, as well as standards forinterconnection, are also set forth. Throughout the book, diagrams are provided to demonstrate theelectrical operation of all the systems that are presented. Inaddition, extensive use of examples helps readers better grasp howintegration of alternative energy sources can beaccomplished. The final chapter gives readers the opportunity to learn about theHOMER Micropower Optimization Model. This computer model, developedby the National Renewable Energy Laboratory (NREL), assists in thedesign of micropower systems and facilitates comparisons of powergeneration techniques. Readers can download the software from theNREL Web site. This book is a must-read for engineers, consultants, regulators,and environmentalists involved in energy production and delivery,helping them evaluate alternative energy sources and integrate theminto an efficient energy delivery system. It is also a superiortextbook for upper-level undergraduates and graduate students.




Automated Diagnostics and Analytics for Buildings


Book Description

With the widespread availability of high-speed, high-capacity microprocessors and microcomputers with high-speed communication ability, and sophisticated energy analytics software, the technology to support deployment of automated diagnostics is now available, and the opportunity to apply automated fault detection and diagnostics to every system and piece of equipment in a facility, as well as for whole buildings, is imminent. The purpose of this book is to share information with a broad audience on the state of automated fault detection and diagnostics for buildings applications, the benefits of those applications, emerging diagnostic technology, examples of field deployments, the relationship to codes and standards, automated diagnostic tools presently available, guidance on how to use automated diagnostics, and related issues.













Smart Energy Grid Engineering


Book Description

Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. Includes detailed support to integrate systems for smart grid infrastructures Features global case studies outlining design components and their integration within the grid Provides examples and best practices from industry that will assist in the migration to smart grids