Waste Incineration and Public Health


Book Description

Incineration has been used widely for waste disposal, including household, hazardous, and medical wasteâ€"but there is increasing public concern over the benefits of combusting the waste versus the health risk from pollutants emitted during combustion. Waste Incineration and Public Health informs the emerging debate with the most up-to-date information available on incineration, pollution, and human healthâ€"along with expert conclusions and recommendations for further research and improvement of such areas as risk communication. The committee provides details on: Processes involved in incineration and how contaminants are released. Environmental dynamics of contaminants and routes of human exposure. Tools and approaches for assessing possible human health effects. Scientific concerns pertinent to future regulatory actions. The book also examines some of the social, psychological, and economic factors that affect the communities where incineration takes place and addresses the problem of uncertainty and variation in predicting the health effects of incineration processes.




Environmental and Health Impact of Solid Waste Management Activities


Book Description

Solid waste management issues are a highly emotive topic. Disposal costs need to be balanced against environmental impact, which often results in heated public debate. Disposal options such as incineration and landfill, whilst unpopular with both the public and environmental pressure groups, do not pose the same environmental and health risks as, for example, recycling plants. This book, written by international experts, discusses the various waste disposal options that are available (landfill, incineration, composting, recycling) and then reviews their impact on the environment, and particularly on human health. Comprehensive and highly topical, Environmental and Health Impact of Solid Waste Management Activities will make a strong contribution to scientific knowledge in the area, and will be of value to scientists and policy-makers in particular.




Source Separation and Recycling


Book Description

Source separation of waste and subsequent recycling processes are promising solutions on the road to a circular economy. They reduce waste disposal and the need for resource deployment, while also producing secondary raw materials; as such, they have a significant effect on climate protection. This book presents source separation technologies and related aspects that form the basis for efficient recycling and a modern approach to waste management. It examines legislational drivers and policy aspects of adequate waste collection schemes, as well as segregation technologies and the success factors for their implementation. Summarizing the outcomes of a Sino-German workshop, the focus of this volume is mainly on the current situation in China and Germany. However, the findings are applicable to a broad range of situations and regions around the world. In addition, the book demonstrates the relevance of source separation for climate protection and describes alternative separation technologies. Given the breadth and depth of its coverage, the volume will appeal to environmental scientists, engineers, economists, waste managers and policymakers alike.




Waste Management and Valorization


Book Description

This title includes a number of Open Access chapters. Edited by a leading researcher in the field, this book provides an overview of waste valorization and includes the editor’s research in addition to other experts and recent and relevant studies on this critical topic. It covers treatment and pretreatment technologies and methodologies, energy recovery from solid wastes, recycling and reuse, additional cutting-edge valorization methodologies. Primarily aimed at researchers and advanced students in biochemical, engineering, and environmental fields, this book should also provide a valuable reference for municipal legislators and industry practitioners.







Waste as a Resource


Book Description

The volume of waste produced by human activity continues to grow, but steps are being taken to mitigate this problem by viewing waste as a resource. Recovering a proportion of waste for re-use immediately reduces the volume of landfill. Furthermore, the scarcity of some elements (such as phosphorous and the rare-earth metals) increases the need for their recovery from waste streams. This volume of Issues in Environmental Science and Technology examines the potential resource available from several waste streams, both domestic and industrial. Opportunities for exploiting waste are discussed, along with their environmental and economic considerations. Landfill remains an unavoidable solution in some circumstances, and the current situation regarding this is also presented. Other chapters focus on mine waste, the recovery of fertilisers, and the growing potential for compost. In keeping with the Issues series, this volume is written with a broad audience in mind. University students and active researches in the field will appreciate the latest research and discussion, while policy makers and members of NGOs will benefit from the wealth of information presented.




Cradle to Cradle


Book Description

A manifesto for a radically different philosophy and practice of manufacture and environmentalism "Reduce, reuse, recycle" urge environmentalists; in other words, do more with less in order to minimize damage. But as this provocative, visionary book argues, this approach perpetuates a one-way, "cradle to grave" manufacturing model that dates to the Industrial Revolution and casts off as much as 90 percent of the materials it uses as waste, much of it toxic. Why not challenge the notion that human industry must inevitably damage the natural world? In fact, why not take nature itself as our model? A tree produces thousands of blossoms in order to create another tree, yet we do not consider its abundance wasteful but safe, beautiful, and highly effective; hence, "waste equals food" is the first principle the book sets forth. Products might be designed so that, after their useful life, they provide nourishment for something new-either as "biological nutrients" that safely re-enter the environment or as "technical nutrients" that circulate within closed-loop industrial cycles, without being "downcycled" into low-grade uses (as most "recyclables" now are). Elaborating their principles from experience (re)designing everything from carpeting to corporate campuses, William McDonough and Michael Braungart make an exciting and viable case for change.







What a Waste 2.0


Book Description

Solid waste management affects every person in the world. By 2050, the world is expected to increase waste generation by 70 percent, from 2.01 billion tonnes of waste in 2016 to 3.40 billion tonnes of waste annually. Individuals and governments make decisions about consumption and waste management that affect the daily health, productivity, and cleanliness of communities. Poorly managed waste is contaminating the world’s oceans, clogging drains and causing flooding, transmitting diseases, increasing respiratory problems, harming animals that consume waste unknowingly, and affecting economic development. Unmanaged and improperly managed waste from decades of economic growth requires urgent action at all levels of society. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 aggregates extensive solid aste data at the national and urban levels. It estimates and projects waste generation to 2030 and 2050. Beyond the core data metrics from waste generation to disposal, the report provides information on waste management costs, revenues, and tariffs; special wastes; regulations; public communication; administrative and operational models; and the informal sector. Solid waste management accounts for approximately 20 percent of municipal budgets in low-income countries and 10 percent of municipal budgets in middle-income countries, on average. Waste management is often under the jurisdiction of local authorities facing competing priorities and limited resources and capacities in planning, contract management, and operational monitoring. These factors make sustainable waste management a complicated proposition; most low- and middle-income countries, and their respective cities, are struggling to address these challenges. Waste management data are critical to creating policy and planning for local contexts. Understanding how much waste is generated—especially with rapid urbanization and population growth—as well as the types of waste generated helps local governments to select appropriate management methods and plan for future demand. It allows governments to design a system with a suitable number of vehicles, establish efficient routes, set targets for diversion of waste, track progress, and adapt as consumption patterns change. With accurate data, governments can realistically allocate resources, assess relevant technologies, and consider strategic partners for service provision, such as the private sector or nongovernmental organizations. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 provides the most up-to-date information available to empower citizens and governments around the world to effectively address the pressing global crisis of waste. Additional information is available at http://www.worldbank.org/what-a-waste.




Sustainable Alternative Syngas Fuel


Book Description

The development and use of sustainable and alternative fuels (syngas, biogas, biodiesel, bio-oil, hydrogen) derived from sources other than petroleum is needed due to the limited fossil fuel resources, the need for reduction of atmospheric greenhouse gas emissions, energy security, and to meet the future high energy demand due to population growth. New alternative fuels that can be produced locally and derived from renewable sources will be more sustainable compared to fossil fuels. Alternative and renewable fuels can be produced using different thermochemical and bio-chemical processes. Gasification is a thermochemical process used to produce syngas fuel (mainly hydrogen and carbon dioxide) from renewable (biomass) and conventional (coal) sources. The syngas fuels produced from the gasification process can be used for different applications: power generation (combustion of syngas fuel in gas turbine engines), heating, and transportation (internal combustion engines). This book intends to provide the reader with an overview of the current technologies, methods, and strategies of syngas fuel production, characterization, and application.