Book Description
View the abstract.
Author : Alcides Buss
Publisher : American Mathematical Society
Page : 100 pages
File Size : 49,86 MB
Release : 2024-10-23
Category : Mathematics
ISBN : 1470471523
View the abstract.
Author : Arlan Ramsay
Publisher : American Mathematical Soc.
Page : 208 pages
File Size : 30,4 MB
Release : 2001
Category : Mathematics
ISBN : 0821820427
Groupoids often occur when there is symmetry of a nature not expressible in terms of groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, some of the main examples come from group actions. It should also be noted that in many situations where groupoids have been used, the main emphasis has not been on symmetry or dynamics issues. While the implicit symmetry and dynamics are relevant, the groupoid records mostly the structure of the space of leaves and the holonomy. More generally, the use of groupoids is very much related to various notions of orbit equivalance. This book presents the proceedings from the Joint Summer Research Conference on ``Groupoids in Analysis, Geometry, and Physics'' held in Boulder, CO. The book begins with an introduction to ways in which groupoids allow a more comprehensive view of symmetry than is seen via groups. Topics range from foliations, pseudo-differential operators, $KK$-theory, amenability, Fell bundles, and index theory to quantization of Poisson manifolds. Readers will find examples of important tools for working with groupoids. This book is geared to students and researchers. It is intended to improve their understanding of groupoids and to encourage them to look further while learning about the tools used.
Author : Robert S. Doran
Publisher : American Mathematical Soc.
Page : 434 pages
File Size : 26,98 MB
Release : 2004
Category : Computers
ISBN : 0821834029
John von Neumann and Marshall Stone were two giants of Twentieth Century mathematics. In honor of the 100th anniversary of their births, a mathematical celebration was organized featuring developments in fields where both men were major influences. This volume contains articles from the AMS Special Session, Operator Algebras, Quantization and Noncommutative Geometry: A Centennial Celebration in Honor of John von Neumann and Marshall H. Stone. Papers range from expository and refereed and cover a broad range of mathematical topics reflecting the fundamental ideas of von Neumann and Stone. Most contributions are expanded versions of the talks and were written exclusively for this volume. Included, among Also featured is a reprint of P.R. Halmos's The Legend of John von Neumann. The book is suitable for graduate students and researchers interested in operator algebras and applications, including noncommutative geometry.
Author : Eberhard Kaniuth
Publisher : Cambridge University Press
Page : 359 pages
File Size : 28,66 MB
Release : 2013
Category : Mathematics
ISBN : 052176226X
A comprehensive presentation of the theories of induced representations and Mackey analysis applied to a wide variety of groups.
Author : Eberhard Kaniuth
Publisher : American Mathematical Soc.
Page : 321 pages
File Size : 50,65 MB
Release : 2018-07-05
Category : Mathematics
ISBN : 0821853651
The theory of the Fourier algebra lies at the crossroads of several areas of analysis. Its roots are in locally compact groups and group representations, but it requires a considerable amount of functional analysis, mainly Banach algebras. In recent years it has made a major connection to the subject of operator spaces, to the enrichment of both. In this book two leading experts provide a road map to roughly 50 years of research detailing the role that the Fourier and Fourier-Stieltjes algebras have played in not only helping to better understand the nature of locally compact groups, but also in building bridges between abstract harmonic analysis, Banach algebras, and operator algebras. All of the important topics have been included, which makes this book a comprehensive survey of the field as it currently exists. Since the book is, in part, aimed at graduate students, the authors offer complete and readable proofs of all results. The book will be well received by the community in abstract harmonic analysis and will be particularly useful for doctoral and postdoctoral mathematicians conducting research in this important and vibrant area.
Author : Alan L. T. Paterson
Publisher : American Mathematical Soc.
Page : 474 pages
File Size : 26,82 MB
Release : 1988
Category : Mathematics
ISBN : 0821809857
The subject of amenability has its roots in the work of Lebesgue at the turn of the century. In the 1940s, the subject began to shift from finitely additive measures to means. This shift is of fundamental importance, for it makes the substantial resources of functional analysis and abstract harmonic analysis available to the study of amenability. The ubiquity of amenability ideas and the depth of the mathematics involved points to the fundamental importance of the subject. This book presents a comprehensive and coherent account of amenability as it has been developed in the large and varied literature during this century. The book has a broad appeal, for it presents an account of the subject based on harmonic and functional analysis. In addition, the analytic techniques should be of considerable interest to analysts in all areas. In addition, the book contains applications of amenability to a number of areas: combinatorial group theory, semigroup theory, statistics, differential geometry, Lie groups, ergodic theory, cohomology, and operator algebras. The main objectives of the book are to provide an introduction to the subject as a whole and to go into many of its topics in some depth. The book begins with an informal, nontechnical account of amenability from its origins in the work of Lebesgue. The initial chapters establish the basic theory of amenability and provide a detailed treatment of invariant, finitely additive measures (i.e., invariant means) on locally compact groups. The author then discusses amenability for Lie groups, "almost invariant" properties of certain subsets of an amenable group, amenability and ergodic theorems, polynomial growth, and invariant mean cardinalities. Also included are detailed discussions of the two most important achievements in amenability in the 1980s: the solutions to von Neumann's conjecture and the Banach-Ruziewicz Problem. The main prerequisites for this book are a sound understanding of undergraduate-level mathematics and a knowledge of abstract harmonic analysis and functional analysis. The book is suitable for use in graduate courses, and the lists of problems in each chapter may be useful as student exercises.
Author : Dana P. Williams
Publisher : American Mathematical Soc.
Page : 546 pages
File Size : 43,29 MB
Release : 2007
Category : Mathematics
ISBN : 0821842420
The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of induced representations and Morita equivalence of $C*$-algebras are based. There is also a detailed treatment of the generalized Effros-Hahn conjecture and its proof due to Gootman, Rosenberg, and Sauvageot. This book is meant to be self-contained and accessible to any graduate student coming out of a first course on operator algebras. There are appendices that deal with ancillary subjects, which while not central to the subject, are nevertheless crucial for a complete understanding of the material. Some of the appendices will be of independent interest. to view another book by this author, please visit Morita Equivalence and Continuous-Trace $C*$-Algebras.
Author : Semen Grigorʹevich Gindikin
Publisher : American Mathematical Soc.
Page : 272 pages
File Size : 19,4 MB
Release : 1994
Category : Mathematics
ISBN : 082180300X
A combination of new results and surveys of recent work on representation theory and the harmonic analysis of real and p-adic groups. Among the topics are nilpotent homogeneous spaces, multiplicity formulas for induced representations, and new methods for constructing unitary representations of real reductive groups. The 12 papers are from a conference at Rutgers University, February 1993. No index. Annotation copyright by Book News, Inc., Portland, OR
Author : Gerald B. Folland
Publisher : CRC Press
Page : 317 pages
File Size : 19,43 MB
Release : 2016-02-03
Category : Mathematics
ISBN : 1498727158
A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul
Author : Joachim Cuntz
Publisher : Birkhäuser
Page : 325 pages
File Size : 11,30 MB
Release : 2017-10-24
Category : Mathematics
ISBN : 3319599151
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.