Smart Cities, Green Technologies, and Intelligent Transport Systems


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Conference on Smart Cities and Green ICT Systems, SMARTGREENS 2017, and the Third International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2017, held in Porto, Portugal in April 2017. The 8 full papers of SMARTGREENS 2017 presented were carefully reviewed and selected from 70 submissions. VEHITS 2017 received 77 paper submissions from which 9 papers were selected and published in this book. The papers reflect topics such as smart cities, energy-aware systems and technologies, sustainable computing and communications, sustainable transportation and smart mobility.




Access


Book Description







Plug-in Hybrid Electric Vehicle Emissions Impacts on Control Strategy and Fuel Economy


Book Description

Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, at the expense of increased tailpipe emissions due to multiple "cold" start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. The dissertation research focuses on the design of a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which lead to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain "torque shaping" algorithms that eliminate high engine torque transients during these periods. The results of the dissertation research show that PHEVs do have the potential for substantial reductions in fuel consumption, while remaining environmentally friendly. Tailpipe emissions from a representative PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption are minimal for the emissions reduction techniques that are implemented, while in some cases, substantial fuel consumption reductions are observed.




Transitions to Alternative Vehicles and Fuels


Book Description

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.




Analysis of Plug-in Hybrid Electric Vehicles' Utility Factors Using GPS-based Longitudinal Travel Data


Book Description

The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.




Impact of Observed Travel and Charging Behavior, Simulated Workplace Charging Infrastructure, and Vehicle Design on PHEV Utility Factors (UF), Total Charge Depleting (CD) Driving and Time of Day (TOD) Grid Demand


Book Description

Plug-in hybrid electric vehicles (PHEVs) can run on gasoline or grid electricity and have been widely touted as promising more future societal and environmental benefits than hybrid electric vehicles (HEVs). However, since the charging of PHEVs will place new loads on the electrical grid, how much and the time of day (TOD) at which users plug in their vehicles will have implications for electricity providers who must meet the additional electrical load required to charge a fleet of PHEVs. PHEV charging could place new burdens on existing electrical infrastructure (substations and transformers) and generating capacity. Information about consumers' charging behavior can help utilities and interested parties better plan for PHEVS in the marketplace. To date, analysts have made assumptions as to the design of PHEVs that will be purchased, and the travel and charging behavior of the future users. Furthermore, since PHEVs can run in charge depleting (CD) and charge sustaining (CS) modes there is uncertainty as to how much travel will be completed in each mode due to the variety of possible vehicle designs, access to charging infrastructure, and travel and charging behavior of PHEV users. Accounting for the amount of travel in each mode is crucial in order to accurately assess the fuel economy (FE) benefits, green house gas (GHG) emissions and costs of PHEVs. In 2001, the Society of Automotive Engineers (SAE) promulgated standard J2841 defining the utility factor (UF) as the percentage of travel that can be completed in CD mode for a PHEV fleet with a given CD range. As such, the SAE standard J2841 has a substantial influence on policies regarding PHEVs and their assumed benefits and costs, and has been used by analysts, industry, and policy makers to calculate PHEV corporate average fuel economy (CAFE), GHG emissions, operating costs and Zero Emission Vehicle (ZEV) credits. My analysis challenges J2841 by calculating the observed UF for a fleet of PHEVs driven by 25 Plausible Early Market (PEM) PHEV buyers in a demonstration and market research project. To estimate the potential effects on the UF of additional recharging infrastructure, I model a workplace charging scenario in which each of the 25 households recharges the PHEV at their workplace as well as at home. Lastly, hypothetical consumer designed PHEVs, solicited from each PEM household, are used to create and compare future market scenarios in which consumers are offered a wide variety of makes and body styles of PHEVs--thus simulating a plausible future market in which a variety of PHEVs are offered for sale. The results suggest that promoting "short range" PHEVs and focusing on popular vehicle-types, rather than upon achieving high CD ranges, could lead to greater total benefits from PHEVs in the early market, through more widespread adoption of PHEVs. Compared to SAE J2841, the observed UFs from the PEM demonstration data are 10 percentage points higher for PHEVs of up to 40 miles of CD range. At 40 miles CD range, J2841 stipulates a UF of 62%; I calculate a UF of 72% from the observed data. The increase in CD driving from adding simulated workplace charging varies by vehicle range, with the largest percentage point increases in CD driving occurring below 20 miles. Workplace charging changes the TOD distribution of power needed to charge a fleet of vehicles, producing a new maximum at 9:30am. The addition of workplace charging under the conditions modeled here does not change the evening peak power demand.




On-road Emissions and Energy Efficiency Assessment of a Plug-in Hybrid Electric Vehicle


Book Description

In order to assess potential benefits brought by the electrification of transport it becomes more and more important to evaluate the performance of hybrid electric vehicles (HEVs) in real-driving conditions, measuring on-road air pollutant emissions and energy efficiency. The present report describes a portable system used at JRC for e-measurements in hybrid and electric vehicles, as an upgrade of the classic PEMS (Portable Emission Measurement System). Preliminary results of a test campaign conducted on a Euro-6 Plug-in Hybrid Passenger Car (PHEV) equipped with a Flywheel Alternator Starter (FAS) are reported. The influence of different driving modes as well as of different initial battery state of charge on CO2 and NOx emissions and energy consumption has been evaluated.