An Adaptive Region Growing based on Neutrosophic Set in Ultrasound Domain for Image Segmentation


Book Description

Breast tumor segmentation in ultrasound is important for breast ultrasound (BUS) quantitative analysis and clinical diagnosis. Even this topic has been studied for a long time, it is still a challenging task to segment tumor in BUS accurately arising from difficulties of speckle noise and tissue background inconsistence. To overcome these difficulties, we formulate breast tumor segmentation as a classification problem in the neutrosophic set (NS) domain which has been previously studied for removing speckle noise and enhancing contrast in BUS images. The similarity set score and homogeneity value for each pixel have been calculated in the NS domain to characterize each pixel of BUS image. Based on that, the seed regions are selected by an adaptive Otsu-based thresholding method and morphology operations, then an adaptive region growing approach is developed for obtaining candidate tumor regions in NS domain.




A Survey Of Ultrasonography Breast Cancer Image Segmentation Techniques


Book Description

The most common cause of death among women globally is breast cancer. One of the key strategies to reduce mortality associated with breast cancer is to develop effective early detection techniques. The segmentation of breast ultrasound (BUS) image in Computer-Aided Diagnosis (CAD) systems is critical and challenging. Image segmentation aims to represent the image in a simplified and more meaningful way while retaining crucial features for easier analysis.




Neutrosophic Set in Medical Image Analysis


Book Description

Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis




Neutrosophic Clustering Algorithm Based on Sparse Regular Term Constraint


Book Description

Clustering algorithm is one of the important research topics in the field of machine learning. Neutrosophic clustering is the generalization of fuzzy clustering and has been applied to many fields. this paper presents a new neutrosophic clustering algorithm with the help of regularization. Firstly, the regularization term is introduced into the FC-PFS algorithm to generate sparsity, which can reduce the complexity of the algorithm on large data sets. Secondly, we propose a method to simplify the process of determining regularization parameters. Finally, experiments show that the clustering results of this algorithm on artificial data sets and real data sets are mostly better than other clustering algorithms. Our clustering algorithm is effective in most cases.




Neutrosophic Set - A Generalization of The Intuitionistic Fuzzy Set


Book Description

In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.




A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation


Book Description

It is really important to diagnose jaw tumor in its early stages to improve its prognosis. A differential diagnosis could be performed using X-ray images; therefore, accurate and fully automatic jaw lesions image segmentation is a challenging and essential task. The aim of this work was to develop a novel, fully automatic and effective method for jaw lesions in panoramic X-ray image segmentation.




Design and Development of Affordable Healthcare Technologies


Book Description

Technological advancements in the last few decades have significantly revolutionized the healthcare industry, resulting in life expectancy improvement in human beings. The use of automated machines in healthcare has reduced human errors and has notably improved disease diagnosis efficiency. Design and Development of Affordable Healthcare Technologies provides emerging research on biomedical instrumentation, bio-signal processing, and device development within the healthcare industry. This book provides insight into various subjects including patient monitoring, medical imaging, and disease classification. This book is a vital reference source for medical professionals, biomedical engineers, scientists, researchers, and medical students interested in the comprehensive research on the advancements in healthcare technologies.




Advances in Communication Systems and Networks


Book Description

This book presents the selected peer-reviewed papers from the International Conference on Communication Systems and Networks (ComNet) 2019. Highlighting the latest findings, ideas, developments and applications in all areas of advanced communication systems and networking, it covers a variety of topics, including next-generation wireless technologies such as 5G, new hardware platforms, antenna design, applications of artificial intelligence (AI), signal processing and optimization techniques. Given its scope, this book can be useful for beginners, researchers and professionals working in wireless communication and networks, and other allied fields.




A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments


Book Description

Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diagnostic decision-making process of medical experts, they can be considered as expert systems in medicine.




Optimization Theory Based on Neutrosophic and Plithogenic Sets


Book Description

Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic. - All essential topics about neutrosophic optimization and Plithogenic sets make this volume the only single source of comprehensive information - New and innovative theories help researchers solve problems under diverse optimization environments - Varied applications address practitioner fields such as computational intelligence, image processing, medical diagnosis, fault diagnosis, and optimization design