Stochastic Storage Processes


Book Description

This book is based on a course I have taught at Cornell University since 1965. The primary topic of this course was queueing theory, but related topics such as inventories, insurance risk, and dams were also included. As a text I used my earlier book, Queues and Inventories (John Wiley, New York, 1965). Over the years the emphasis in this course shifted from detailed analysis of probability models to the study of stochastic processes that arise from them, and the subtitle of the text, "A Study of Their Basic Stochastic Processes," became a more appropriate description of the course. My own research into the fluctuation theory for U:vy processes provided a new perspective on the topics discussed, and enabled me to reorganize the material. The lecture notes used for the course went through several versions, and the final version became this book. A detailed description of my approach will be found in the Introduction. I have not attempted to give credit to authors of individual results. Readers interested in the historical literature should consult the Selected Bibliography given at the end of the Introduction. The original work in this area is presented here with simpler proofs that make full use of the special features of the underlying stochastic processes. The same approach makes it possible to provide several new results. Thanks are due to Kathy King for her excellent typing of the manuscript.




An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Stochastic Image Processing


Book Description

Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.




Stochastic Processes and Models in Operations Research


Book Description

Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.




Adventures in Stochastic Processes


Book Description

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.




Stochastic Storage Processes


Book Description

A self-contained treatment of stochastic processes arising from models for queues, insurance risk, and dams and data communication, using their sample function properties. The approach is based on the fluctuation theory of random walks, L vy processes, and Markov-additive processes, in which Wiener-Hopf factorisation plays a central role. This second edition includes results for the virtual waiting time and queue length in single server queues, while the treatment of continuous time storage processes is thoroughly revised and simplified. With its prerequisite of a graduate-level course in probability and stochastic processes, this book can be used as a text for an advanced course on applied probability models.







Uncertainties in energy markets and their consideration in energy storage evaluation


Book Description

This book successfully illustrates the modeling of electricity prices with the help of stochastic processes. The relatively new phenomenon of negative prices is also integrated into the models. The integration of feed-in from wind power plants in energy models is also very innovative. This approach helps to simulate electricity prices in order to take into account the "merit-order effect of renewable energy". Finally, the models are used for the techno-economic evaluation of energy storages.




Passage Times for Markov Chains


Book Description

This book is a survey of work on passage times in stable Markov chains with a discrete state space and a continuous time. Passage times have been investigated since early days of probability theory and its applications. The best known example is the first entrance time to a set, which embraces waiting times, busy periods, absorption problems, extinction phenomena, etc. Another example of great interest is the last exit time from a set. The book presents a unifying treatment of passage times, written in a systematic manner and based on modern developments. The appropriate unifying framework is provided by probabilistic potential theory, and the results presented in the text are interpreted from this point of view. In particular, the crucial role of the Dirichlet problem and the Poisson equation is stressed. The work is addressed to applied probalilists, and to those who are interested in applications of probabilistic methods in their own areas of interest. The level of presentation is that of a graduate text in applied stochastic processes. Hence, clarity of presentation takes precedence over secondary mathematical details whenever no serious harm may be expected. Advanced concepts described in the text gain nowadays growing acceptance in applied fields, and it is hoped that this work will serve as an useful introduction. Abstracted by Mathematical Reviews, issue 94c