Dynamic Strength Study of Small, Fixed-edge, Longitudinally Restrained Two-way Reinforced Concrete Slabs


Book Description

Increases in ultimate strengths of 23.7 (Series I) and 24.6 (Series II) percent under dynamic loading were obtained. Theoretical slab strengths were determined. Modification of the equations used allowed good predictions of tensile membrane resistance of the static slabs. The equations were used to predict peak pressures sustained by the dynamic slabs.




Strength and Behavior of Reinforced Concrete Slab-column Connections Subjected to Static and Dynamic Loadings


Book Description

The objectives of this investigation were to study the strength and behavior of slowly (statically) loaded reinforced concrete slab-column connections and to determine the effect of rapid (dynamic) loading on the strength and behavior by comparison with the static test results. Nineteen full-scale models of a connection and adjoining slab area, consisting of a simply supported slab 84 or 94 inches square and 6-1/2 inches thick loaded concentrically on a 10- or 20-inch-square stub column at the center of the slab, were tested. The main variables were the amounts of reinforcement in the slab (p = 0.75 and 1.50 percent), the column size, and the loading speed. Eight specimens were loaded to failure statically, two were subjected to a very rapidly applied load of short duration, and nine were loaded to failure by a rapidly applied load with a rise time chosen to represent the conditions in a blast-loaded structure. The static test results are compared with 12 shear strength prediction methods. Differences between the mechanism of shear failure in slabs and beams are examined. (Author).










Design and Testing of a Blast-resistant Reinforced Concrete Slab System


Book Description

The objectives of the investigation were to design and model test a blast-resistant reinforced concrete slab system serving as the roof of a basement shelter area. The slab system was designed to offer sufficient radiation and blast protection to insure a survival probability for its occupants of 85 to 95 percent for a fa 15-psi airblast overpressure loading. Static and dynamic tests were conducted on two 1/4-scale models of a prototype shelter. The prototype shelter, as designed, has a reinforced concrete flat slab roof consisting of three 18-foot spans in each direction supported by four interior columns and by a continuous wall around the perimeter. The model included the perimeter walls and different panel configurations which would influence the load-carrying capacity of the prototype structure. The slab system was designed using the empirical method of the 1963 American Concrete Institute Code with modifications to account for the dynamic loading effects. (Author).