An Analysis of the Thermal Stability of Conventional and Alternative Aviation Fuels


Book Description

An experimental apparatus was used to examine the thermal stability of conventional and alternative aviation fuels. The apparatus is a simplified but controllable representation of an aircraft fuel system consisting of a preheating section and a test section. The preheating section simulates the fuel conditions as it acts as a coolant on board of the aircraft while the test section simulates the conditions of the fuel injection nozzles. The apparatus measures the accumulated deposit by taking the pressure drop data across the heated test section. After thermal stressing, the pressure drop data is verified by a carbon burnoff apparatus. The fuel chemical composition is evaluated by nuclear magnetic resonance spectroscopy. Experimental results are presented and discussed in this thesis for four different types of aviation fuels to show the relationship between fuel chemical composition and coking propensity. The experiments show that fuels with aromatic content tend to produce more deposits and the alternative fuels are potentially more thermally stable than their conventional counterparts.




Evaluation of Thermal Oxidative Stability of Sustainable Aviation Fuels Using a Novel Thermal Stability Measurement Method


Book Description

In aviation industry, fuel is used as both propellant and coolant. Because the fuel is used as coolant, it is exposed to thermally stressed. This thermal stress leads to occur thermal oxidative reactions at some temperature levels (150 0́3 350℗ʻC). However, all fuels have different thermal oxidative stability depends on their fuel physical and chemical properties. Thermal oxidative stability can be basically identified as the resistance of autoxidation of fuel. The aim of this study is to develop a new test method and test range of alternative fuels in it, for generation of knowledge in the area of thermal stability of alternative fuels. In order to measure thermal stability of aviation fuels, a novel thermal stability measurement method has been developed in this study. After considering and setting a novel test rig up, experiments have been conducted for some fuels, such as diesel fuel, two Jet A fuels from different manufacturers, Jet Propellant - 5 (JP-5), Jet Propellant - 8 (JP-8) and some sustainable aviation fuels (SAFs), such as HEFA-SPK (Hydro-processed esters and fatty acids)-(Synthetic paraffinic kerosene), Alcohol-to-Jet (ATJ), Biojet and Gevo jet blend fuels. Diesel fuel has been used in this study mostly to analyze if this new measurement method has been working properly. Jet A fuel is also most common used in commercial aviation industry; so, it is a good reference fuel to compare the results of sustainable fuels with. SAFs have a great deal of potential to be used in aviation industry for the future due to their environmentally friendly properties. Unlike other fuels, JP-5 and JP-8 are mostly employed in military aircrafts. Throughout the experimental period, these fuels have been heated to get exposed to thermally stressed, and dissolved oxygen (DO) sensors have been run to analyze oxygen (O2) content inside of each thermally stressed fuel. By measuring the O2 content inside of fuel, fuel break point has been measured. Fuel break point is determined where the thermal oxidative reactions begin. At the end of this study, all results of fuel break points and O2 consumptions of fuels during the thermal oxidative reactions have been compared, and it has found that HEFA-SPK has higher fuel break point than ones of other fuels, while one of Jet A, JP-8, and F-T/ATJ have the lowest one. This study shows that different fuels have different decomposition rate, and trend of fuel break point and oxygen consumption rate of tested fuels has been provided in this study.







Enhancement of Aviation Fuel Thermal Stability Characterization Through Application of Ellipsometry


Book Description

ASTM D3241/Jet Fuel Thermal Oxidation Tester (JFTOT) procedure, the standard method for testing thermal stability of conventional aviation turbine fuels is inherently limited due to the subjectivity in the color standard for tube deposit rating. Quantitative assessment of the physical characteristics of oxidative fuel deposits provides a more powerful method for comparing the thermal oxidation stability characteristics of fuels, especially in a research setting. We propose employing a Spectroscopic Ellipsometer to determine the film thickness and profile of oxidative fuel deposits on JFTOT heater tubes. Using JP-8 aviation fuel and following a modified ASTM D3241 testing procedure, the capabilities of the Ellipsometer will be demonstrated by measuring oxidative fuel deposit profiles for a range of different deposit characteristics. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.




Aviation Fuel


Book Description

For technical readers in the aviation and fuel industries, and in testing laboratories, explores the history and philosophy of the thermal stability of aviation fuel, and considerations during the fuel's manufacture, storage and transport, use, and assessment. The 13 papers, representing a number of




Aviation Fuels


Book Description

Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels. - Presents an overview on all relevant fields of aviation fuels, including production, approval, fuel systems compatibility and combustion (including emissions) - Discusses the environmental impacts and carbon footprint of alternative fuels - Features a chapter on electric flight and hydrogen powered aircraft and how its implementation will impact the aviation industry










Heat Transfer and Thermal Stability of Alternative Aircraft Fuels


Book Description

A test and evaluation program was conducted to determine the heat transfer and thermal stability characteristics of several selected alternative fuels. Accelerated fuel coking tests were conducted with three alternative fuels and a specification grade JP-5 fuel, in a heated tube apparatus. Test conditions included both simulated engine conditions and higher-temperature accelerated coking conditions. Resulting deposit rates were evaluated and correlated as a function of the test conditions. Deposit effects on heat transfer were also evaluated and correlated as a function of test condition. (Author).




Thermal Stability Characteristics of Fisher Tropsch and Hydroprocessed Alternative Aviation Fuels in a Fixed Bed Reactor


Book Description

In the results reported in this study, physical methods such as gravimetric measurements were used to obtain the deposits, while UV/VIS absorption, and GC/MS were used to study chemical changes in fuel composition and their relation with coking deposits. Thermal depositions between 16 and 46 [microgram]/cm2 were measured at the tubes after 3 hours of testing, finding no significant differences between the baseline Jet-A and the renewable fuels blends, even when sulfur levels, which are linked to deposits formation, were lower for the renewable fuels. Fuel bulk constituents, such as paraffins and cycloalkanes, under thermal stressing and catalytic influence of the tube metals cracked into reactive intermediates leading to surface deposits formation, like aromatic compounds. These compounds were identified by the shift towards longer excitation wavelengths of the UV-Vis absorption measurements on stressed fuels.