An Analysis of Two-phase Flows in Conditions Relevant to Microgravity


Book Description

Promising technological applications of two-phase flows in space have captured the increasing interest of the space sector, provoking a strong demand for more fundamental knowledge. Great efforts have been made in recent decades to study the behavior of two-phase flows in low-gravity environments, which is expected to be different than the behavior observed in the presence of gravitational forces. Nevertheless, many phenomena are still poorly understood. The development of any of these new technologies demands a better knowledge of two-phase flows. In this manuscript we address questions regarding the generation of gas-liquid flows and their behavior in conditions relevant for a microgravity environment. In particular, we focus on an air-water mixture formed in a capillary T-junction. To this end, an experimental setup has been designed to accurately control both gas and liquid flow rates. We performed a quantitative characterization on ground of the T-junction, whose operation is robust to changes in gravity level. Its main performance is the generation of bubbles at a regular frequency with small size dispersion. We obtained two working regimes of the T-junction and identified the crossover region between them. Bubble, slug, churn and annular flow regimes have been observed during the experiments and a flow pattern map has been plotted. We present an experimental study on the bubble-slug transition in microgravity-related conditions. In addition, we address questions regarding the existence of a critical void fraction in order for the bubble-slug transition to occur. The gas-liquid flow has been characterized by measuring the bubble generation frequency as well as the bubble and liquid slug sizes. Since bubble dynamics is also expected to be different in the absence of buoyancy, the bubble velocity has also been studied. The mean void fraction appears as one relevant parameter that allows for the prediction of frequency, bubble velocity, and lengths. We propose curves obtained empirically for the behavior of generation frequency, the bubble velocity and the lengths. The dependence of the frequency on the Strouhal dimensionless number has been analyzed. A numerical study of the formation of mini-bubbles in a 2D T-junction by means of the fluid dynamics numerical code JADIM is also presented. Simulations were carried out for different flow conditions, giving rise to results on the bubble generation frequency, bubble velocity, void fraction and characteristic lengths. Numerical results have been then compared with experimental data.




Analysis of Two-phase Flows Under Microgravity (spatial) Conditions Using OpenFOAM.


Book Description

Two-phase flows have gained importance over the last years due to their multiple and useful applications in space systems. For example, two-phase flows are used in fuel cells micro-channel networks, in the fluid management of Environmental Control and Life Support Systems (ECLSS) or in thermal management systems. However, many problems regarding two-phase flows in microgravity conditions are still open, so further research is needed. In this study, numerical simulations of gas-liquid two-phase flow are performed in a T-junction capillary. Bubbles are formed as a consequence of the interaction between air and water. The geometry used is the same as in [1, 2, 3] in order to make reliable comparisons with the results extracted from the laboratory experiments performed in the mentioned literature. OpenFOAM is used as the main software for the simulations, and ParaView and MATLAB are used to post-process the data. InterFoam is selected as the solver since it uses an incompressible, immiscible and isothermal Volume of Fluid (VOF) method. Some validations were made before setting up the definitive cases of the simulations. These validations were related to the adequate capillary length in order to obtain fully-developed flows, to the appropriate mesh quality to get good results and maintain an acceptable computational complexity, to the optimal contact angle value to get close to reality bubble behavior in terms of adherence to the walls, and to the right location of the sampling surfaces responsible for extracting the data. An analysis of the fluid velocity profiles along both of the capillaries of the T-junction was also made. Bubbles are analyzed in terms of their generating frequency, volume, length and velocity. Bubble volume dispersion is quantified using the polydispersity index. A pressure probe is used to measure the gauge pressure at the very center of the T-junction. Visual comparisons are made between simulation bubbles and experimental bubbles. In the end, the results of the simulations qualitatively fitted the experimental data, validating Computational Fluid Dynamics (CFD) as an alternative and correct tool to perform two-phase flow studies under microgravity conditions.







Microgravity Two-phase Flow and Heat Transfer


Book Description

Multiphase thermal systems have numerous applications in aerospace, heat-exchange, transport of contaminants in environmental systems, and energy transport and conversion systems. A reduced - or microgravity - environment provides an excellent tool for accurate study of the flow without the masking effects of gravity. This book presents for the first time a comprehensive coverage of all aspects of two-phase flow behaviour in the virtual absence of gravity.







Physics of Fluids in Microgravity


Book Description

In a microgravity experiment, the conditions prevalent in fluid phases can be substantially different from those on the ground and can be exploited to improve different processes. Fluid physics research in microgravity is important for the advancement of all microgravity scients: life, material, and engineering. Space flight provides a unique laboratory that allows scientists to improve their understanding of the behaviour of fluids in low gravity, allowing the investigation of phenomena and processes normally masked by the effects of gravity and thus difficult to study on Earth. Physics of Fluids in Microgravity provides a clear view of recent research and progress in the different fields of fluid research in space. The topics presented include bubles and drops dynamics, Maragoni flows, diffustion and thermodiffusion, solidfication,a nd crystal growth. The results obtained so far are, in some cases, to be confirmed by extensive research activities on the International Space station, where basic and applied microgravity experimentation will take place in the years to come.







Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work


Book Description

This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.