An APL Compiler


Book Description

Presents the results of an investigation into the issues raised by the development of a compiler for APL, a very high level computer programming language. APL presents a number of novel problems for a compiler writer: weak variable typing, run time changes in variable shape, and a host of primitive operations. Through the integration of several recently developed compiler construction techniques, such as data flow analysis, and a novel and space efficient demand driven or lazy evaluation approach to code generation, the author has been able to produce a true compiler for the language while still maintaining the felxibility and ease that are the hallmarks of APL.




APL--an Interactive Approach


Book Description




Mastering Dyalog APL


Book Description




Programming Languages


Book Description

Starting off. The basic evaluator. Using larger values. Lisp. apl. Functional programming. Scheme. Sasl. Object-oriented programming. Clu. Smalltalk. Logic programming. Prolog. Implementation issues. Compilation. Memory management.




Engineering a Compiler


Book Description

This entirely revised second edition of Engineering a Compiler is full of technical updates and new material covering the latest developments in compiler technology. In this comprehensive text you will learn important techniques for constructing a modern compiler. Leading educators and researchers Keith Cooper and Linda Torczon combine basic principles with pragmatic insights from their experience building state-of-the-art compilers. They will help you fully understand important techniques such as compilation of imperative and object-oriented languages, construction of static single assignment forms, instruction scheduling, and graph-coloring register allocation. - In-depth treatment of algorithms and techniques used in the front end of a modern compiler - Focus on code optimization and code generation, the primary areas of recent research and development - Improvements in presentation including conceptual overviews for each chapter, summaries and review questions for sections, and prominent placement of definitions for new terms - Examples drawn from several different programming languages




History of Programming Languages


Book Description

History of Programming Languages presents information pertinent to the technical aspects of the language design and creation. This book provides an understanding of the processes of language design as related to the environment in which languages are developed and the knowledge base available to the originators. Organized into 14 sections encompassing 77 chapters, this book begins with an overview of the programming techniques to use to help the system produce efficient programs. This text then discusses how to use parentheses to help the system identify identical subexpressions within an expression and thereby eliminate their duplicate calculation. Other chapters consider FORTRAN programming techniques needed to produce optimum object programs. This book discusses as well the developments leading to ALGOL 60. The final chapter presents the biography of Adin D. Falkoff. This book is a valuable resource for graduate students, practitioners, historians, statisticians, mathematicians, programmers, as well as computer scientists and specialists.




The Rust Programming Language (Covers Rust 2018)


Book Description

The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.




Compiler Construction


Book Description

Compilers and operating systems constitute the basic interfaces between a programmer and the machine for which he is developing software. In this book we are concerned with the construction of the former. Our intent is to provide the reader with a firm theoretical basis for compiler construction and sound engineering principles for selecting alternate methods, imple menting them, and integrating them into a reliable, economically viable product. The emphasis is upon a clean decomposition employing modules that can be re-used for many compilers, separation of concerns to facilitate team programming, and flexibility to accommodate hardware and system constraints. A reader should be able to understand the questions he must ask when designing a compiler for language X on machine Y, what tradeoffs are possible, and what performance might be obtained. He should not feel that any part of the design rests on whim; each decision must be based upon specific, identifiable characteristics of the source and target languages or upon design goals of the compiler. The vast majority of computer professionals will never write a compiler. Nevertheless, study of compiler technology provides important benefits for almost everyone in the field . • It focuses attention on the basic relationships between languages and machines. Understanding of these relationships eases the inevitable tran sitions to new hardware and programming languages and improves a person's ability to make appropriate tradeoft's in design and implementa tion .




A Programming Language


Book Description

Explores how programming language is a signifier for a whole host of mathematical algorithms and procedures. The book focuses on specific areas of application which serve as universal examples and are chosen to illustrate particular facets of the effort to design explicit and concise programming languages.




Coders at Work


Book Description

Peter Seibel interviews 15 of the most interesting computer programmers alive today in Coders at Work, offering a companion volume to Apress’s highly acclaimed best-seller Founders at Work by Jessica Livingston. As the words “at work” suggest, Peter Seibel focuses on how his interviewees tackle the day-to-day work of programming, while revealing much more, like how they became great programmers, how they recognize programming talent in others, and what kinds of problems they find most interesting. Hundreds of people have suggested names of programmers to interview on the Coders at Work web site: www.codersatwork.com. The complete list was 284 names. Having digested everyone’s feedback, we selected 15 folks who’ve been kind enough to agree to be interviewed: Frances Allen: Pioneer in optimizing compilers, first woman to win the Turing Award (2006) and first female IBM fellow Joe Armstrong: Inventor of Erlang Joshua Bloch: Author of the Java collections framework, now at Google Bernie Cosell: One of the main software guys behind the original ARPANET IMPs and a master debugger Douglas Crockford: JSON founder, JavaScript architect at Yahoo! L. Peter Deutsch: Author of Ghostscript, implementer of Smalltalk-80 at Xerox PARC and Lisp 1.5 on PDP-1 Brendan Eich: Inventor of JavaScript, CTO of the Mozilla Corporation Brad Fitzpatrick: Writer of LiveJournal, OpenID, memcached, and Perlbal Dan Ingalls: Smalltalk implementor and designer Simon Peyton Jones: Coinventor of Haskell and lead designer of Glasgow Haskell Compiler Donald Knuth: Author of The Art of Computer Programming and creator of TeX Peter Norvig: Director of Research at Google and author of the standard text on AI Guy Steele: Coinventor of Scheme and part of the Common Lisp Gang of Five, currently working on Fortress Ken Thompson: Inventor of UNIX Jamie Zawinski: Author of XEmacs and early Netscape/Mozilla hacker